यूनिपोटेंसी: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{about| | {{about|बीजीय पद|एक जैविक सेल जिसमें केवल एक प्रकार की सेल में विकसित होने की क्षमता होती है|सेल पोटेंसी#यूनिपोटेंसी}} | ||
गणित में, वलय R का एक एकशक्तिशाली तत्व r ऐसा है कि r − 1 एक शून्यशक्तिशाली तत्व है; दूसरे शब्दों में, (r − 1)<sup>n</sup> कुछ n के लिए शून्य है।विशेष रूप से, एक [[वर्ग मैट्रिक्स|वर्ग]] आव्यूहों M एक 'एकशक्त आव्यूहों' है यदि और केवल यदि इसका अभिलक्षणिक बहुपद P(t),t − 1 की घात है। इस प्रकार एक एकशक्त आव्यूहोंके सभी [[Index.php?title=आइगेनवैल्यू|आइगेनवैल्यू]] 1 हैं। | गणित में, वलय R का एक एकशक्तिशाली तत्व r ऐसा है कि r − 1 एक शून्यशक्तिशाली तत्व है; दूसरे शब्दों में, (r − 1)<sup>n</sup> कुछ n के लिए शून्य है।विशेष रूप से, एक [[वर्ग मैट्रिक्स|वर्ग]] आव्यूहों M एक 'एकशक्त आव्यूहों' है यदि और केवल यदि इसका अभिलक्षणिक बहुपद P(t),t − 1 की घात है। इस प्रकार एक एकशक्त आव्यूहोंके सभी [[Index.php?title=आइगेनवैल्यू|आइगेनवैल्यू]] 1 हैं। | ||
Revision as of 22:39, 30 July 2023
गणित में, वलय R का एक एकशक्तिशाली तत्व r ऐसा है कि r − 1 एक शून्यशक्तिशाली तत्व है; दूसरे शब्दों में, (r − 1)n कुछ n के लिए शून्य है।विशेष रूप से, एक वर्ग आव्यूहों M एक 'एकशक्त आव्यूहों' है यदि और केवल यदि इसका अभिलक्षणिक बहुपद P(t),t − 1 की घात है। इस प्रकार एक एकशक्त आव्यूहोंके सभी आइगेनवैल्यू 1 हैं।
'अर्ध-एकशक्तिशाली' शब्द का अर्थ है कि कुछ शक्ति एकशक्तिशाली है, उदाहरण के लिए आइगेनवैल्यू के साथ एक विकर्ण आव्यूहों के लिए जो एकता की सभी जड़ें हैं।
बीजगणितीय समूहों सिद्धांत में, एक समूह तत्व 'एकशक्त' होता है यदि यह एक निश्चित प्राकृतिक समूह प्रतिनिधित्व में एकशक्त रूप से कार्य करता है। एक 'एकशक्त सजातीय बीजगणितीय समूह' तब एक ऐसा समूह होता है जिसके सभी तत्व एकशक्त होते हैं।
परिभाषा
आव्यूहों के साथ परिभाषा
समूह पर विचार करें (गणित) ऊपरी-त्रिकोणीय आव्यूहों के साथ विकर्ण के अनुदिश है, इसलिए वे आव्यूहों का समूह हैं।[1]
फिर, एक एकशक्तिशाली समूह को कुछ उपसमूह के रूप में परिभाषित किया जा सकता है। योजना का उपयोग करके समूह समूह योजना के रूप में परिभाषित किया जा सकता है
और एक सजातीय समूह योजना अप्रभावी है यदि यह इस योजना की एक बंद समूह योजना है।
रिंग सिद्धांत के साथ परिभाषा
एक सजातीय बीजगणितीय समूह का एक तत्व x एकशक्त होता है जब उसका संबद्ध सही अनुवाद ऑपरेटर, rx होता है, जी के सजातीय समन्वय रिंग ए[जी] पर, ए[जी] के रैखिक मानचित्र के रिंग के एक तत्व के रूप में स्थानीय रूप से एकशक्त है। (स्थानीय रूप से एकशक्त का मतलब है कि ए [जी] के किसी भी परिमित-आयामी स्थिर उप-स्थान पर इसका प्रतिबंध सामान्य रिंग-सैद्धांतिक अर्थ में एकशक्त है।)
एक सजातीय बीजगणितीय समूह को 'एकशक्त' कहा जाता है यदि इसके सभी तत्व एकशक्त हैं। कोई भी एकरूपी बीजगणितीय समूह विकर्ण प्रविष्टियों 1 के साथ ऊपरी त्रिकोणीय आव्यूहों के समूह के एक बंद उपसमूह के लिए समरूपी है, और उलटा (तर्क) ऐसा कोई भी उपसमूह एकरूपी है। विशेष रूप से कोई भी एकशक्तिशाली समूह एक शून्यशक्तिशाली समूह है, यद्यपि इसका विपरीत सत्य नहीं है (प्रति उदाहरण: GLn(k) के विकर्ण आव्यूहों)।
उदाहरण के लिए, का मानक प्रतिनिधित्व पर मानक आधार के साथ निश्चित वेक्टर है।
प्रतिनिधित्व सिद्धांत के साथ परिभाषा
यदि एक एकशक्त समूह एक सजातीय विविधता पर कार्य करता है, तो इसकी सभी कक्षाएँ बंद हो जाती हैं, और यदि यह एक परिमित-आयामी सदिश स्थल पर रैखिक रूप से कार्य करता है तो इसमें एक गैर-शून्य निश्चित सदिश होता है। वस्तुत:, बाद वाले गुण एकाधिकारहीन समूहों की विशेषता बताते है।[1]विशेष रूप से, इसका तात्पर्य यह है कि कोई असतहीय अर्धसरल निरूपण नहीं हैं।
उदाहरण
Un
निस्सन्देह, आव्यूहों का समूह अशक्तिशाली है. निचली केंद्रीय श्रृंखला का उपयोग
जहां
- और
वहाँ संबद्ध एकाधिकार समूह हैं। उदाहरण के लिए, पर , केंद्रीय श्रृंखला आव्यूहों का समूह हैं
- , , , और
एकशक्तिशाली समूहों के कुछ प्रेरित उदाहरण दिए गए हैं।
Gan
योगात्मक समूह अंतःस्थापन के माध्यम से एक अशक्तिशाली समूह है
ध्यान दें कि आव्यूह गुणन क्या देता है
इसलिए यह एक समूह अंतःस्थापन है। अधिक सामान्यतः, एक अंतःस्थापन होती है मानचित्र से
योजना सिद्धांत का उपयोग करते हुए, ऑपरेटर द्वारा दिया गया है
जहां
फ्रोबेनियस का कर्नेल
प्रकार्यक पर उपश्रेणी पर विचार करें , वहाँ सबफ़ंक्टर है जहाँ
तो यह फ्रोबेनियस अंतःरूपांतरण के कर्नेल द्वारा दिया गया है।
विशेषता 0 पर एकशक्तिशाली समूहों का वर्गीकरण
विशेषता 0 से अधिक, निलपोटेंट लाई बीजगणित के संबंध में एकशक्तिशाली बीजगणितीय समूहों का एक अच्छा वर्गीकरण है। याद रखें कि एक निलपोटेंट ले बीजगणित कुछ का एक उपबीजगणित है जैसे कि पुनरावृत्त सहायक क्रिया अंततः शून्य-मानचित्र पर समाप्त हो जाती है। आव्यूह के संदर्भ में, इसका मतलब यह है कि यह का ,आव्यूहों के साथ के लिए एक उपबीजगणित है।
फिर, परिमित-आयामी निलपोटेंट लाई बीजगणित और एकशक्त बीजगणितीय समूहों की श्रेणियों की समानता है।[1]पृष्ठ 261 इसका निर्माण बेकर-कैंपबेल-हॉसडॉर्फ़ शृंखला का उपयोग करके किया जा सकता है|बेकर-कैंपबेल-हॉसडॉर्फ़ श्रृंखला , जहां एक परिमित-आयामी निलपोटेंट लाई बीजगणित, नक्शा दिया गया है
पर एक एकशक्त बीजगणितीय समूह संरचना देता है .
दूसरी दिशा में घातीय मानचित्र किसी भी शून्य-शक्तिशाली वर्ग आव्यूहों को एक एकशक्त आव्यूहों में ले जाता है। इसके अतिरिक्त, यदि U एक क्रमविनिमेय एकशक्तिशाली समूह है, तो घातांकीय मानचित्र U से U के लाई बीजगणित से एक समरूपता उत्पन्न करता है।
टिप्पणियाँ
किसी भी आयाम के बीजगणितीय रूप से बंद क्षेत्र पर एकशक्त समूहों को सैद्धांतिक रूप से वर्गीकृत किया जा सकता है, लेकिन व्यवहार में वर्गीकरण की जटिलता आयाम के साथ बहुत तेजी से बढ़ती है, इसलिए लोग[who?] आयाम 6 के आसपास कहीं न कहीं हार मानने की प्रवृत्ति होती है।
एकशक्तिशाली मूलक
एक बीजगणितीय समूह G का एकशक्तिशाली मूलांक G के एक बीजगणितीय समूह के मूलांक में एकशक्तिशाली तत्वों का समूह है। यह G का एक जुड़ा हुआ एकशक्तिशाली सामान्य उपसमूह है, और इसमें ऐसे सभी अन्य उपसमूह सम्मिलित हैं। किसी समूह को अपचायक कहा जाता है यदि उसका एकशक्तिशाली मूलांक साधारण हो। यदि G अपचायक है तो इसका मूलांक एक टोरस है।
बीजगणितीय समूहों का अपघटन
बीजगणितीय समूहों को एकशक्तिशाली समूहों, गुणक समूहों और एबेलियन प्रजाति में विघटित किया जा सकता है, लेकिन वे कैसे विघटित होते हैं इसका विवरण उनके आधार क्षेत्र (गणित) की विशेषता पर निर्भर करता है।
लक्षण 0
विशेषता 0 पर एक बीजगणितीय समूह की एक अच्छी अपघटन प्रमेय है इसकी संरचना को एक रैखिक बीजगणितीय समूह और एबेलियन प्रजाति की संरचना से संबंधित करती है। समूहों का एक संक्षिप्त सटीक क्रम है।[2]पृष्ठ 8
जहां एक एबेलियन प्रजाति है, गुणात्मक प्रकार का है (अर्थ, ज्यामितीय रूप से, फॉर्म के टोरी और बीजगणितीय समूहों का एक उत्पाद है ) और एक एकशक्तिशाली समूह है।
विशेषता p
जब आधार क्षेत्र की विशेषता p होती है तो [2]एक बीजगणितीय समूह के लिए एक अनुरूप कथन होता है: वहाँ एक सबसे छोटा उपसमूह उपस्थित है ऐसे कि
- एक एकशक्तिशाली समूह है।
- एबेलियन प्रजाति का एक समूह द्वारा गुणात्मक प्रकार का विस्तार है।
- अनुरूपता (समूह सिद्धांत) तक अद्वितीय है और आइसोजेनी तक अद्वितीय है।
जॉर्डन अपघटन
एक पूर्ण क्षेत्र पर रैखिक बीजगणितीय समूह के किसी भी तत्व g को विशिष्ट रूप से एकशक्तिशाली और अर्धसरल तत्वों gu और gs के उत्पाद g = gu gs के रूप में लिखा जा सकता है।समूह GLn(C) के कारक में), यह अनिवार्य रूप से कहता है कि कोई भी व्युत्क्रमणीय जटिल आव्यूह एक विकर्ण आव्यूह और एक ऊपरी त्रिकोणीय आव्यूह के उत्पाद से संयुग्मित होता है, जो (कमोबेश) जॉर्डन-चेवेल्ली अपघटन का गुणक संस्करण है।
समूहों के लिए जॉर्डन अपघटन का एक संस्करण भी है:एक पूर्ण क्षेत्र पर कोई भी क्रमविनिमेय रैखिक बीजगणितीय समूह एक एकशक्तिशाली समूह और एक अर्धसरल समूह का उत्पाद है।
यह भी देखें
- अपचायकग्रुप
- अद्वितीय प्रतिनिधित्व
- डेलिग्ने-लुस्ज़टिग सिद्धांत
संदर्भ
- ↑ 1.0 1.1 1.2 Milne, J. S. रैखिक बीजगणितीय समूह (PDF). pp. 252–253, Unipotent algebraic groups.
- ↑ 2.0 2.1 Brion, Michel (2016-09-27). "आइसोजेनी तक क्रमविनिमेय बीजगणितीय समूह". arXiv:1602.00222 [math.AG].
- A. Borel, Linear algebraic groups, ISBN 0-387-97370-2
- Borel, Armand (1956), "Groupes linéaires algébriques", Annals of Mathematics, Second Series, Annals of Mathematics, 64 (1): 20–82, doi:10.2307/1969949, JSTOR 1969949
- Popov, V.L. (2001) [1994], "unipotent element", Encyclopedia of Mathematics, EMS Press
- Popov, V.L. (2001) [1994], "unipotent group", Encyclopedia of Mathematics, EMS Press
- Suprunenko, D.A. (2001) [1994], "unipotent matrix", Encyclopedia of Mathematics, EMS Press