फैंगचेंग (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Algorithm similar to Gaussian elimination}} | {{Short description|Algorithm similar to Gaussian elimination}} | ||
फ़ैंगचेंग | '''फ़ैंगचेंग''' मुख्य रूप से कभी-कभी ए-चेंग या समीकरण के ऊपर लिखा जाता है, [[चीनी गणित]] ({{zh|c=方程|p=fāng chéng}}) में मौलिक रूप से [[जे आईयू झांग अंकगणित]] गणितीय कला पर नौ अध्यायों के आठवें अध्याय का शीर्षक है, जो 10वीं से दूसरी शताब्दी ईसा पूर्व की अवधि के समय विकसित हुए विद्वानों की कई पीढ़ियों द्वारा रचित है। यह पाठ चीन के सबसे प्राचीन जीवित गणितीय ग्रंथों में से है। चीनी गणित के कई इतिहासकारों ने देखा है कि फैंगचेंग शब्द का सटीक अनुवाद करना सरल नहीं है।<ref name="Hist01">{{cite book |author=Jean-Clause Martzloff |title=चीनी गणित का इतिहास|url=https://archive.org/details/historychinesema00mart_058 |url-access=limited |date=2006 |publisher=Springer |page=[https://archive.org/details/historychinesema00mart_058/page/n268 250]}}</ref><ref name="Hart01">{{cite book |author=Roger Hart |title=रैखिक बीजगणित की चीनी जड़ें|date=2011 |publisher=The Johns Hopkins University Press |url=https://muse.jhu.edu/chapter/322683 |accessdate=6 December 2016}}</ref> चूंकि, पहले इसके रूप में इसका अनुवाद [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] या वर्ग सारणी के रूप में किया गया है।<ref name="Hist01" /> इस शब्द का उपयोग नौ अध्यायों में पुस्तक के अध्याय 8 में चर्चा की गई समस्याओं के निश्चित वर्ग को हल करने के लिए विशेष प्रक्रिया को संदर्भित करने के लिए भी किया जाता है।<ref name="Hart01" /> | ||
फैंगचेंग शब्द द्वारा संदर्भित और नौ अध्यायों के आठवें अध्याय में बताई गई प्रक्रिया अनिवार्य रूप से एन अज्ञात में एन समीकरणों की प्रणालियों का | फैंगचेंग शब्द द्वारा संदर्भित और नौ अध्यायों के आठवें अध्याय में बताई गई प्रक्रिया में अनिवार्य रूप से एन अज्ञात संख्याओं में एन समीकरणों की प्रणालियों का हल खोजने की प्रक्रिया है, और आधुनिक रैखिक बीजगणित में कुछ समान प्रक्रियाओं के समान है। इस प्रकार सबसे पहले उपयोग की गई फैंगचेंग प्रक्रिया उसी के समान है जिसे अब हम '''गाऊसी उन्मूलन''' कहते हैं। | ||
फैंगचेंग प्रक्रिया प्राचीन चीन में लोकप्रिय थी और [[जापान]] तक प्रसारित की गई थी। यह संभव है कि यह प्रक्रिया [[यूरोप]] में भी प्रसारित की गई और | फैंगचेंग प्रक्रिया प्राचीन काल में चीन में लोकप्रिय थी और [[जापान]] तक प्रसारित की गई थी। यह संभव है कि यह प्रक्रिया [[यूरोप]] में भी प्रसारित की गई और आव्यूह (गणित), गाऊसी उन्मूलन और निर्धारक के आधुनिक [[सिद्ध|सिद्धांत]] के अग्रदूत के रूप में कार्य किया गया हैं।<ref name="Hart02" /> यह सर्वविदित है कि 1678 में [[गॉटफ्राइड लीबनिज]] द्वारा [[उन्मूलन सिद्धांत]] और निर्धारकों के अध्ययन से पहले [[ यूनान |यूनान]] या यूरोप में रैखिक बीजगणित पर बहुत अधिक कार्य नहीं हुआ था। इसके अतिरिक्त, लीबनिज [[सिनोफाइल]] थे और ऐसे चीनी ग्रंथों के अनुवाद में रुचि रखते थे जो उनके लिए उपलब्ध थे।<ref name="Hart02">{{cite book |author=Roger Hart|title=रैखिक बीजगणित की चीनी जड़ें|date=2011 |publisher=The Johns Hopkins University Press |url=https://muse.jhu.edu/chapter/322679 |accessdate=6 December 2016}}</ref> | ||
== फैंगचेंग | == फैंगचेंग का अर्थ == | ||
प्रथम अक्षर फेंग के अर्थ में कोई अस्पष्टता नहीं है। इसका अर्थ है आयताकार या वर्गाकार. | प्रथम अक्षर फेंग के अर्थ में कोई अस्पष्टता नहीं है। इसका अर्थ है आयताकार या वर्गाकार. अपितु दूसरे पात्र चेंग को अलग-अलग व्याख्याएँ दी गई हैं:<ref name="Hart01" /> | ||
#सबसे | #सबसे प्राचीन समय में वर्तमान समय में की गी टिप्पणियों, [[ एल आईयू हुई |एल आईयू हुई]] द्वारा, दिनांक 263 सीई, गैर-गणितीय शब्द केचेंग का परिचय देते हुए चेंग को उपायों के रूप में परिभाषित करती है, जिसका अर्थ है कर दरों के अनुसार कर एकत्र करना हैं। इस प्रकार लियू पुनः फैंगचेंग को मापों के आयत के रूप में परिभाषित करता है। चूंकि, केचेंग शब्द गणितीय शब्द नहीं है और यह नौ अध्यायों में कहीं और दिखाई नहीं देता है। इस कारण गणित के अतिरिक्त, केचेंग शब्द है जिसका उपयोग कर एकत्र करने के लिए सबसे अधिक किया जाता है। | ||
गणितीय कला पर | गणितीय कला पर ली जी के नौ अध्याय जो उच्चारण और अर्थ भी चेंग को माप के रूप में दर्शाते हैं, इसे पुनः गैर-गणितीय शब्द, केलू का उपयोग करते हैं, जो सामान्यतः कराधान के लिए उपयोग किया जाता है। इस प्रकार ली जी फैंगचेंग को परिभाषित करते हैं: फैंग का अर्थ बाएँ और दाएँ क्रम में है। यहाँ पर चेंग का अर्थ अनुपात की शर्तों पर आधारित है। इस प्रकार इस अनुपात की शर्तें मुख्य रूप से बाएं और दाएं तथा कई वस्तुओं को साथ संयोजित हो जाता हैं, इसलिए इसे आयताकार सरणी भी कहा जाता है। | ||
#[[यांग हुई]] के विस्तृत स्पष्टीकरण के साथ गणितीय कला पर नौ अध्याय चेंग को वजन, ऊंचाई और लंबाई मापने के लिए सामान्य शब्द के रूप में परिभाषित करते हैं। विस्तृत स्पष्टीकरण में कहा गया है: जिसे आयताकार (फैंग) कहा जाता है वह संख्याओं का आकार है; माप (चेंग) [सभी प्रकार के] माप के लिए सामान्य शब्द है, यह वजन, लंबाई और आयतन को बराबर करने की विधि भी है, विशेष रूप से स्पष्ट और स्पष्ट रूप से बड़े और छोटे को मापने का संदर्भ देता है। | #[[यांग हुई]] के विस्तृत स्पष्टीकरण के साथ गणितीय कला पर नौ अध्याय चेंग को वजन, ऊंचाई और लंबाई मापने के लिए सामान्य शब्द के रूप में परिभाषित करते हैं। विस्तृत स्पष्टीकरण में कहा गया है: जिसे आयताकार (फैंग) कहा जाता है, वह संख्याओं का आकार है; माप (चेंग) [सभी प्रकार के] माप के लिए सामान्य शब्द है, यह वजन, लंबाई और आयतन को बराबर करने की विधि भी है, विशेष रूप से स्पष्ट और स्पष्ट रूप से बड़े और छोटे को मापने का संदर्भ देता है। | ||
19वीं सदी के अंत से, चीनी गणितीय साहित्य में फ़ैंगचेंग शब्द का उपयोग समीकरण को दर्शाने के लिए किया जाता रहा है। | 19वीं सदी के अंत से, चीनी गणितीय साहित्य में फ़ैंगचेंग शब्द का उपयोग समीकरण को दर्शाने के लिए किया जाता रहा है। चूंकि, जैसा कि पहले ही उल्लेख किया गया है, शब्द का पारंपरिक अर्थ समीकरण से बहुत अलग है। | ||
== फैंगचेंग शीर्षक वाले अध्याय की सामग्री == | == फैंगचेंग शीर्षक वाले अध्याय की सामग्री == | ||
नौ अध्यायों की पुस्तक के फांगचेंग नामक आठवें अध्याय में 18 समस्याएं हैं। | नौ अध्यायों की पुस्तक के फांगचेंग नामक आठवें अध्याय में 18 समस्याएं हैं। यहाँ पर इसकी पूरी किताब में कुल 288 समस्याएं हैं। इन 18 समस्याओं में से प्रत्येक साथ रैखिक समीकरणों की प्रणाली को हल करने की समस्या बन जाती है। समस्याएँ अर्थात् समस्या 13 को छोड़कर, सभी समस्याएँ इस अर्थ में निर्धारित हैं कि अज्ञात की संख्या समीकरणों की संख्या के समान है। 2, 3, 4 और 5 अज्ञातों से जुड़ी समस्याएं हैं। नीचे दी गई सूची दर्शाती है कि विभिन्न समस्याओं में कितने अज्ञात हैं: | ||
{| class="wikitable" style="text-align: center" style="margin:1em auto;" | {| class="wikitable" style="text-align: center" style="margin:1em auto;" | ||
|+ | |+अज्ञातों की संख्या और समीकरणों की संख्या दर्शाने वाली सूची | ||
नौ अध्यायों के अध्याय 8 में विभिन्न समस्याओं में | |||
|- | |- | ||
! | ! अज्ञातों की संख्या | ||
समस्या में | |||
! समीकरणों की संख्या | |||
समस्या में | |||
! समस्याओं की क्रम संख्या !! समस्याओं की संख्या || दृढ़ संकल्प | |||
|- | |- | ||
| 2 || 2 ||2, 4, 5, 6, 7, 9, 10, 11 || 8 || | | 2 || 2 ||2, 4, 5, 6, 7, 9, 10, 11 || 8 ||स्थिर | ||
|- | |- | ||
| 3 || 3 || 1, 3, 8, 12, 15, 16 || 6 || | | 3 || 3 || 1, 3, 8, 12, 15, 16 || 6 ||स्थिर | ||
|- | |- | ||
| 4 || 4 || 14, 17 || 2 || | | 4 || 4 || 14, 17 || 2 ||स्थिर | ||
|- | |- | ||
| 5 || 5 || 18 || 1 || | | 5 || 5 || 18 || 1 ||स्थिर | ||
|- | |- | ||
| 6 || 5 || 13 || 1 ||[[Indeterminate system| | | 6 || 5 || 13 || 1 ||[[Indeterminate system|अस्थिर]] | ||
|- | |- | ||
| || || Total || 18 | | || || Total || 18 | ||
|} | |} | ||
सभी 18 समस्याओं की प्रस्तुतियाँ (समस्या 1 और समस्या 3 को छोड़कर) सामान्य | सभी 18 समस्याओं की प्रस्तुतियाँ (समस्या 1 और समस्या 3 को छोड़कर) सामान्य प्रारूप का अनुसरण करती हैं: | ||
*सबसे पहले समस्या बताई गई | *सबसे पहले समस्या बताई गई है। | ||
*तब समस्या का उत्तर दिया जाता है। | *तब समस्या का उत्तर दिया जाता है। | ||
*अंत में उत्तर प्राप्त करने की विधि बताई गई है। | *अंत में उत्तर प्राप्त करने की विधि बताई गई है। | ||
=== समस्या 1 | === समस्या 1 === | ||
* संकट: | * संकट: | ||
Line 49: | Line 54: | ||
** प्रश्न: उच्च, मध्यम और निम्न गुणवत्ता वाले चावल के भूसे से क्रमशः कितनी इकाई चावल का उत्पादन किया जा सकता है? | ** प्रश्न: उच्च, मध्यम और निम्न गुणवत्ता वाले चावल के भूसे से क्रमशः कितनी इकाई चावल का उत्पादन किया जा सकता है? | ||
* समाधान: | * समाधान: | ||
** उच्च गुणवत्ता वाले चावल के भूसे से प्रत्येक 9 + 1/4 यूनिट चावल का उत्पादन होता | ** उच्च गुणवत्ता वाले चावल के भूसे से प्रत्येक 9 + 1/4 यूनिट चावल का उत्पादन होता है। | ||
** मध्यम गुणवत्ता वाले चावल के भूसे से प्रत्येक 4 + 1/4 यूनिट चावल का उत्पादन होता | ** मध्यम गुणवत्ता वाले चावल के भूसे से प्रत्येक 4 + 1/4 यूनिट चावल का उत्पादन होता है। | ||
** कम गुणवत्ता वाले चावल के भूसे से प्रत्येक 2 + 3/4 यूनिट चावल का उत्पादन होता | ** कम गुणवत्ता वाले चावल के भूसे से प्रत्येक 2 + 3/4 यूनिट चावल का उत्पादन होता है। | ||
समस्या 1 की प्रस्तुति में समाधान प्राप्त करने की प्रक्रिया का विवरण (स्पष्ट संकेत नहीं) | समस्या 1 की प्रस्तुति में समाधान प्राप्त करने की प्रक्रिया का विवरण (स्पष्ट संकेत नहीं) सम्मिलित है। इस प्रक्रिया को फैंगचेंग शू कहा गया है, जिसका अर्थ है फैंगचेंग प्रक्रिया। शेष सभी समस्याओं के लिए फैंगचेंग प्रक्रिया का पालन करने का निर्देश दिया जाता है, कभी-कभी धनात्मक और ऋणात्मक संख्याओं के लिए प्रक्रिया का उपयोग करने का निर्देश दिया जाता है। | ||
=== समस्या 3 | === समस्या 3 === | ||
ऋणात्मक संख्याओं को संभालने के लिए विशेष प्रक्रिया भी है, जिसे धनात्मक और ऋणात्मक संख्याओं के लिए प्रक्रिया को झेंग फू शू कहा जाता है। इस प्रक्रिया को समस्या 3 को हल करने की विधि के भाग के रूप में समझाया गया है। | |||
=== समस्या 13 | === समस्या 13 === | ||
इन 18 समस्याओं के संग्रह में समस्या 13 बहुत | इन 18 समस्याओं के संग्रह में समस्या 13 बहुत महत्वपूर्ण है। इसमें 6 अज्ञात हैं, अपितु केवल 5 समीकरण हैं, और इसलिए समस्या 13 अनिश्चित है और इसका कोई अद्वितीय समाधान नहीं है। यह रैखिक समीकरणों की प्रणाली का सबसे पहला ज्ञात संदर्भ है जिसमें अज्ञात की संख्या समीकरणों की संख्या से अधिक है। चीनी गणित के इतिहासकार जीन-क्लाउड मार्टज़लॉफ़ के सुझाव के अनुसार, रोजर हार्ट ने इस समस्या को वेल समस्या का नाम दिया है। | ||
== संदर्भ == | == संदर्भ == |
Revision as of 10:57, 30 July 2023
फ़ैंगचेंग मुख्य रूप से कभी-कभी ए-चेंग या समीकरण के ऊपर लिखा जाता है, चीनी गणित (Chinese: 方程; pinyin: fāng chéng) में मौलिक रूप से जे आईयू झांग अंकगणित गणितीय कला पर नौ अध्यायों के आठवें अध्याय का शीर्षक है, जो 10वीं से दूसरी शताब्दी ईसा पूर्व की अवधि के समय विकसित हुए विद्वानों की कई पीढ़ियों द्वारा रचित है। यह पाठ चीन के सबसे प्राचीन जीवित गणितीय ग्रंथों में से है। चीनी गणित के कई इतिहासकारों ने देखा है कि फैंगचेंग शब्द का सटीक अनुवाद करना सरल नहीं है।[1][2] चूंकि, पहले इसके रूप में इसका अनुवाद आव्यूह (गणित) या वर्ग सारणी के रूप में किया गया है।[1] इस शब्द का उपयोग नौ अध्यायों में पुस्तक के अध्याय 8 में चर्चा की गई समस्याओं के निश्चित वर्ग को हल करने के लिए विशेष प्रक्रिया को संदर्भित करने के लिए भी किया जाता है।[2]
फैंगचेंग शब्द द्वारा संदर्भित और नौ अध्यायों के आठवें अध्याय में बताई गई प्रक्रिया में अनिवार्य रूप से एन अज्ञात संख्याओं में एन समीकरणों की प्रणालियों का हल खोजने की प्रक्रिया है, और आधुनिक रैखिक बीजगणित में कुछ समान प्रक्रियाओं के समान है। इस प्रकार सबसे पहले उपयोग की गई फैंगचेंग प्रक्रिया उसी के समान है जिसे अब हम गाऊसी उन्मूलन कहते हैं।
फैंगचेंग प्रक्रिया प्राचीन काल में चीन में लोकप्रिय थी और जापान तक प्रसारित की गई थी। यह संभव है कि यह प्रक्रिया यूरोप में भी प्रसारित की गई और आव्यूह (गणित), गाऊसी उन्मूलन और निर्धारक के आधुनिक सिद्धांत के अग्रदूत के रूप में कार्य किया गया हैं।[3] यह सर्वविदित है कि 1678 में गॉटफ्राइड लीबनिज द्वारा उन्मूलन सिद्धांत और निर्धारकों के अध्ययन से पहले यूनान या यूरोप में रैखिक बीजगणित पर बहुत अधिक कार्य नहीं हुआ था। इसके अतिरिक्त, लीबनिज सिनोफाइल थे और ऐसे चीनी ग्रंथों के अनुवाद में रुचि रखते थे जो उनके लिए उपलब्ध थे।[3]
फैंगचेंग का अर्थ
प्रथम अक्षर फेंग के अर्थ में कोई अस्पष्टता नहीं है। इसका अर्थ है आयताकार या वर्गाकार. अपितु दूसरे पात्र चेंग को अलग-अलग व्याख्याएँ दी गई हैं:[2]
- सबसे प्राचीन समय में वर्तमान समय में की गी टिप्पणियों, एल आईयू हुई द्वारा, दिनांक 263 सीई, गैर-गणितीय शब्द केचेंग का परिचय देते हुए चेंग को उपायों के रूप में परिभाषित करती है, जिसका अर्थ है कर दरों के अनुसार कर एकत्र करना हैं। इस प्रकार लियू पुनः फैंगचेंग को मापों के आयत के रूप में परिभाषित करता है। चूंकि, केचेंग शब्द गणितीय शब्द नहीं है और यह नौ अध्यायों में कहीं और दिखाई नहीं देता है। इस कारण गणित के अतिरिक्त, केचेंग शब्द है जिसका उपयोग कर एकत्र करने के लिए सबसे अधिक किया जाता है।
गणितीय कला पर ली जी के नौ अध्याय जो उच्चारण और अर्थ भी चेंग को माप के रूप में दर्शाते हैं, इसे पुनः गैर-गणितीय शब्द, केलू का उपयोग करते हैं, जो सामान्यतः कराधान के लिए उपयोग किया जाता है। इस प्रकार ली जी फैंगचेंग को परिभाषित करते हैं: फैंग का अर्थ बाएँ और दाएँ क्रम में है। यहाँ पर चेंग का अर्थ अनुपात की शर्तों पर आधारित है। इस प्रकार इस अनुपात की शर्तें मुख्य रूप से बाएं और दाएं तथा कई वस्तुओं को साथ संयोजित हो जाता हैं, इसलिए इसे आयताकार सरणी भी कहा जाता है।
- यांग हुई के विस्तृत स्पष्टीकरण के साथ गणितीय कला पर नौ अध्याय चेंग को वजन, ऊंचाई और लंबाई मापने के लिए सामान्य शब्द के रूप में परिभाषित करते हैं। विस्तृत स्पष्टीकरण में कहा गया है: जिसे आयताकार (फैंग) कहा जाता है, वह संख्याओं का आकार है; माप (चेंग) [सभी प्रकार के] माप के लिए सामान्य शब्द है, यह वजन, लंबाई और आयतन को बराबर करने की विधि भी है, विशेष रूप से स्पष्ट और स्पष्ट रूप से बड़े और छोटे को मापने का संदर्भ देता है।
19वीं सदी के अंत से, चीनी गणितीय साहित्य में फ़ैंगचेंग शब्द का उपयोग समीकरण को दर्शाने के लिए किया जाता रहा है। चूंकि, जैसा कि पहले ही उल्लेख किया गया है, शब्द का पारंपरिक अर्थ समीकरण से बहुत अलग है।
फैंगचेंग शीर्षक वाले अध्याय की सामग्री
नौ अध्यायों की पुस्तक के फांगचेंग नामक आठवें अध्याय में 18 समस्याएं हैं। यहाँ पर इसकी पूरी किताब में कुल 288 समस्याएं हैं। इन 18 समस्याओं में से प्रत्येक साथ रैखिक समीकरणों की प्रणाली को हल करने की समस्या बन जाती है। समस्याएँ अर्थात् समस्या 13 को छोड़कर, सभी समस्याएँ इस अर्थ में निर्धारित हैं कि अज्ञात की संख्या समीकरणों की संख्या के समान है। 2, 3, 4 और 5 अज्ञातों से जुड़ी समस्याएं हैं। नीचे दी गई सूची दर्शाती है कि विभिन्न समस्याओं में कितने अज्ञात हैं:
अज्ञातों की संख्या
समस्या में |
समीकरणों की संख्या
समस्या में |
समस्याओं की क्रम संख्या | समस्याओं की संख्या | दृढ़ संकल्प |
---|---|---|---|---|
2 | 2 | 2, 4, 5, 6, 7, 9, 10, 11 | 8 | स्थिर |
3 | 3 | 1, 3, 8, 12, 15, 16 | 6 | स्थिर |
4 | 4 | 14, 17 | 2 | स्थिर |
5 | 5 | 18 | 1 | स्थिर |
6 | 5 | 13 | 1 | अस्थिर |
Total | 18 |
सभी 18 समस्याओं की प्रस्तुतियाँ (समस्या 1 और समस्या 3 को छोड़कर) सामान्य प्रारूप का अनुसरण करती हैं:
- सबसे पहले समस्या बताई गई है।
- तब समस्या का उत्तर दिया जाता है।
- अंत में उत्तर प्राप्त करने की विधि बताई गई है।
समस्या 1
- संकट:
- उच्च गुणवत्ता वाले चावल के भूसे के 3 बंडल, मध्यम गुणवत्ता वाले चावल के भूसे के 2 बंडल और निम्न गुणवत्ता वाले चावल के भूसे के 1 बंडल से 39 यूनिट चावल का उत्पादन होता है।
- उच्च गुणवत्ता वाले चावल के भूसे के 2 बंडल, मध्यम गुणवत्ता वाले चावल के भूसे के 3 बंडल और निम्न गुणवत्ता वाले चावल के भूसे के 1 बंडल से 34 यूनिट चावल का उत्पादन होता है।
- उच्च गुणवत्ता वाले चावल के भूसे के 1 बंडल, मध्यम गुणवत्ता वाले चावल के भूसे के 2 बंडल और निम्न गुणवत्ता वाले चावल के भूसे के 3 बंडल से 26 यूनिट चावल का उत्पादन होता है।
- प्रश्न: उच्च, मध्यम और निम्न गुणवत्ता वाले चावल के भूसे से क्रमशः कितनी इकाई चावल का उत्पादन किया जा सकता है?
- समाधान:
- उच्च गुणवत्ता वाले चावल के भूसे से प्रत्येक 9 + 1/4 यूनिट चावल का उत्पादन होता है।
- मध्यम गुणवत्ता वाले चावल के भूसे से प्रत्येक 4 + 1/4 यूनिट चावल का उत्पादन होता है।
- कम गुणवत्ता वाले चावल के भूसे से प्रत्येक 2 + 3/4 यूनिट चावल का उत्पादन होता है।
समस्या 1 की प्रस्तुति में समाधान प्राप्त करने की प्रक्रिया का विवरण (स्पष्ट संकेत नहीं) सम्मिलित है। इस प्रक्रिया को फैंगचेंग शू कहा गया है, जिसका अर्थ है फैंगचेंग प्रक्रिया। शेष सभी समस्याओं के लिए फैंगचेंग प्रक्रिया का पालन करने का निर्देश दिया जाता है, कभी-कभी धनात्मक और ऋणात्मक संख्याओं के लिए प्रक्रिया का उपयोग करने का निर्देश दिया जाता है।
समस्या 3
ऋणात्मक संख्याओं को संभालने के लिए विशेष प्रक्रिया भी है, जिसे धनात्मक और ऋणात्मक संख्याओं के लिए प्रक्रिया को झेंग फू शू कहा जाता है। इस प्रक्रिया को समस्या 3 को हल करने की विधि के भाग के रूप में समझाया गया है।
समस्या 13
इन 18 समस्याओं के संग्रह में समस्या 13 बहुत महत्वपूर्ण है। इसमें 6 अज्ञात हैं, अपितु केवल 5 समीकरण हैं, और इसलिए समस्या 13 अनिश्चित है और इसका कोई अद्वितीय समाधान नहीं है। यह रैखिक समीकरणों की प्रणाली का सबसे पहला ज्ञात संदर्भ है जिसमें अज्ञात की संख्या समीकरणों की संख्या से अधिक है। चीनी गणित के इतिहासकार जीन-क्लाउड मार्टज़लॉफ़ के सुझाव के अनुसार, रोजर हार्ट ने इस समस्या को वेल समस्या का नाम दिया है।
संदर्भ
- ↑ 1.0 1.1 Jean-Clause Martzloff (2006). चीनी गणित का इतिहास. Springer. p. 250.
- ↑ 2.0 2.1 2.2 Roger Hart (2011). रैखिक बीजगणित की चीनी जड़ें. The Johns Hopkins University Press. Retrieved 6 December 2016.
- ↑ 3.0 3.1 Roger Hart (2011). रैखिक बीजगणित की चीनी जड़ें. The Johns Hopkins University Press. Retrieved 6 December 2016.
अग्रिम पठन
- Christine Andrews-Larson (2015). "Roots of Linear Algebra: An Historical Exploration of Linear Systems". PRIMUS. 25 (6): 507–528. doi:10.1080/10511970.2015.1027975. S2CID 122250602.
- Kangshen Shen; John N. Crossley; Anthony Wah-Cheung Lun, Hui Liu (1999). The Nine Chapters on the Mathematical Art: Companion and Commentary. Oxford University Press. pp. 386–440. ISBN 978-0-19-853936-0. Retrieved 7 December 2016.