त्रिरेखीय प्रक्षेप: Difference between revisions

From Vigyanwiki
No edit summary
Line 94: Line 94:
\end{align}</math>
\end{align}</math>


[[Category:Created On 24/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors|Short description/doc]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:बहुभिन्नरूपी प्रक्षेप]]


==यह भी देखें==
==यह भी देखें==

Revision as of 13:40, 31 July 2023

ट्रिलिनियर इंटरपोलेशन (त्रि-आयामी प्रक्षेप) 3-आयामी नियमित ग्रिड पर बहुभिन्नरूपी इंटरपोलेशन की एक विधि है। यह किसी मध्यवर्ती बिंदु पर किसी फलन के मान का अनुमान लगाता है जालक बिंदुओं पर फलन डेटा का उपयोग करके, स्थानीय अक्षीय आयताकार प्रिज्म (ज्यामिति) के भीतर रैखिक रूप से है। एक मनमाना, असंरचित ग्रिड के लिए (जैसा कि परिमित तत्व विश्लेषण में उपयोग किया जाता है), प्रक्षेप के अन्य तरीकों का उपयोग किया जाना चाहिए; यदि सभी जाल तत्व चतुर्पाश्वीय (3डी संकेतन) हैं, तो बैरीसेंट्रिक निर्देशांक (गणित) बैरीसेंट्रिक निर्देशांक ऑन टेट्राहेड्रा एक सीधी प्रक्रिया प्रदान करते हैं।

ट्रिलिनियर इंटरपोलेशन का उपयोग प्रायः संख्यात्मक विश्लेषण, डेटा विश्लेषण और कंप्यूटर चित्रलेख में किया जाता है।

रैखिक और द्विरेखीय प्रक्षेप की तुलना

रेखिक आंतरिक रैखिक इंटरपोलेशन का विस्तार है, जो आयाम वाले स्थानों में संचालित होता है , और द्विरेखीय प्रक्षेप, जो आयाम के साथ संचालित होता है , आयाम के लिए . ये प्रक्षेप योजनाएं क्रम 1 के बहुपदों का उपयोग करती हैं, जो क्रम 2 की सटीकता देती हैं, और इसकी आवश्यकता होती है प्रक्षेप बिंदु के आसपास आसन्न पूर्व-परिभाषित मान है। ट्रिलिनियर इंटरपोलेशन पर पहुंचने के कई तरीके हैं, जो ऑर्डर 1 के 3-आयामी टेन्सर बी स्प्लीन इंटरपोलेशन के बराबर है, और ट्रिलिनियर इंटरपोलेशन ऑपरेटर भी 3 लीनियर इंटरपोलेशन ऑपरेटरों का एक टेंसर उत्पाद है।

विधि

प्रक्षेप बिंदु C के चारों ओर एक घन पर आठ कोने बिंदु
3डी इंटरपोलेशन का चित्रण
त्रिरेखीय प्रक्षेप का एक ज्यामितीय दृश्य। वांछित बिंदु और संपूर्ण आयतन पर मान का गुणनफल प्रत्येक कोने पर मान और कोने के विकर्ण के विपरीत आंशिक आयतन के गुणनफल के योग के बराबर है।

एक आवर्त और घनीय जालक (लैटिस) पर, चलो , , और प्रत्येक के बीच अंतर हो , , और संबंधित लघुतर निर्देशांक, वह है:

जहाँ नीचे जालक बिंदु को इंगित करता है , और ऊपर जालक बिंदु को इंगित करता है और इसी तरह के लिए और .

सबसे पहले हम साथ-साथ प्रक्षेप करते हैं (कल्पना करें कि हम परिभाषित घन के पक्ष को ''पुशिंग'' (''आगे बढ़ा रहे'') हैं विरोधी पक्ष के लिए, द्वारा परिभाषित ), देना:

जहाँ का अर्थ है फलन मान फिर हम इन मूल्यों को प्रक्षेपित करते हैं (साथ में)। , से ''पुशिंग'' देना को ), देना:

अंततः हम इन मूल्यों को एक साथ प्रक्षेपित करते हैं (एक पंक्ति से चलते हुए):

यह हमें बिंदु के लिए अनुमानित मूल्य देता है।

त्रिरेखीय प्रक्षेप का परिणाम तीन अक्षों के साथ प्रक्षेप चरणों के क्रम से स्वतंत्र है: कोई अन्य क्रम, उदाहरण के लिए , फिर साथ में , और अंत में साथ , समान मान उत्पन्न करता है।

उपरोक्त ऑपरेशनों की कल्पना इस प्रकार की जा सकती है: सबसे पहले हम एक घन के आठ कोनों को ढूंढते हैं जो हमारी रुचि के बिंदु को घेरे हुए हैं। इन कोनों के मूल्य हैं , , , , , , , .

इसके बाद, हम बीच में रैखिक प्रक्षेप करते हैं और फाइंड , और फाइंड , और फाइंड , और फाइंड .

अब हम बीच में प्रक्षेप करते हैं और फाइंड , और फाइंड . अंत में, हम मूल्य की गणना करते हैं के रैखिक प्रक्षेप के माध्यम से और

व्यवहार में, एक त्रिरेखीय प्रक्षेप एक रैखिक प्रक्षेप के साथ संयुक्त दो द्विरेखीय प्रक्षेप के समान होता है:


वैकल्पिक एल्गोरिदम

इंटरपोलेशन समस्या का समाधान लिखने का एक वैकल्पिक तरीका है

जहां रैखिक प्रणाली को हल करके गुणांक पाए जाते हैं