अविभाज्य वितरण: Difference between revisions
From Vigyanwiki
m (added Category:Vigyan Ready using HotCat) |
m (3 revisions imported from alpha:अविभाज्य_वितरण) |
(No difference)
|
Revision as of 07:31, 8 August 2023
संभाव्यता सिद्धांत में, एक अविभाज्य वितरण एक संभाव्यता वितरण है जिसे दो या दो से अधिक गैर-स्थिर सांख्यिकीय स्वतंत्रता यादृच्छिक चर के योग के वितरण के रूप में प्रस्तुत नहीं किया जा सकता है: Z ≠X + Y . यदि इसे इस प्रकार व्यक्त किया जा सकता है, तो यह विघटित हो सकता है: Z = X + Y। यदि, आगे, इसे दो या दो से अधिक स्वतंत्र समान रूप से वितरित स्वतंत्र समान रूप से वितरित यादृच्छिक चर के योग के वितरण के रूप में व्यक्त किया जा सकता है, तो यह विभाज्य है: Z = X1+ X2.
उदाहरण
अविघटित
- सबसे सरल उदाहरण हैं बर्नौली वितरण: बर्नौली-वितरित: यदि
- तो X का संभाव्यता वितरण अविभाज्य है।
- प्रमाण: गैर-स्थिर वितरण U और V को देखते हुए, ताकि U कम से कम दो मान a, b और V दो मान c, d मान ले, a < b और c < d के साथ, तो U + V कम से कम मान लेता है तीन अलग-अलग मान: a + c, a + d, b + d (b + c, a + d के बराबर हो सकता है, उदाहरण के लिए यदि कोई 0,1 और 0,1 का उपयोग करता है)। इस प्रकार गैर-स्थिर वितरणों का योग कम से कम तीन मान मानता है, इसलिए बर्नौली वितरण गैर-स्थिर वितरणों का योग नहीं है।
- मान लीजिए a + b + c = 1, a, b, c ≥ 0, और
- यह संभाव्यता वितरण विघटित है (दो बर्नौली वितरण के योग के वितरण के रूप में: बर्नौली-वितरित यादृच्छिक चर) यदि
- और अन्यथा अविभाज्य। इसे देखने के लिए, मान लीजिए कि U और V स्वतंत्र यादृच्छिक चर हैं और U+V में यह संभाव्यता वितरण है। तो फिर हमारे पास होना ही चाहिए
- कुछ p, q ∈ [0, 1] के लिए, बर्नौली मामले के समान तर्क से (अन्यथा योग U+V तीन से अधिक मान ग्रहण करेगा)। यह इस प्रकार है कि
- दो चर p और q में दो द्विघात समीकरणों की इस प्रणाली का एक समाधान है (p, q) ∈ [0, 1]2यदि और केवल यदि
- इस प्रकार, उदाहरण के लिए,समुच्चय {0,1,2} पर असतत समान वितरण अविभाज्य है, लेकिन दो परीक्षणों के लिए द्विपद वितरण, जिनमें से प्रत्येक की संभावनाएं 1/2 हैं, इस प्रकार संबंधित संभावनाएं a, b, c को 1/4 के रूप में देती हैं। , 1/2, 1/4, विघटित करने योग्य है।
- एक पूर्ण निरंतरता अविभाज्य वितरण। यह दिखाया जा सकता है कि वितरण जिसका संभाव्यता घनत्व कार्य है
- अविघटनीय है.
विघटित होने योग्य
- सभी अनंत विभाज्यता (संभावना) वितरण मजबूत से तर्क डीकंपोजेबल हैं; विशेष रूप से, इसमें सामान्य वितरण जैसे स्थिर वितरण सम्मिलित हैं।
- अंतराल [0, 1] पर समान वितरण (निरंतर) विघटित होता है, क्योंकि यह बर्नौली चर का योग है जो समान संभावनाओं के साथ 0 या 1/2 मानता है और [0, 1/2] पर समान वितरण होता है। इसे दोहराने से अनंत अपघटन प्राप्त होता है:
- जहां स्वतंत्र यादृच्छिक चर Xn प्रत्येक समान संभावनाओं के साथ 0 या 1 के बराबर है - यह बाइनरी विस्तार के प्रत्येक अंक का बर्नौली परीक्षण है।
- अविभाज्य यादृच्छिक चर का योग मूल सारांश में विघटित होता है। लेकिन यह असीम रूप से विभाज्य वितरण साबित हो सकता है। मान लीजिए कि एक यादृच्छिक चर Y का ज्यामितीय वितरण है
- पर {0, 1, 2, ...}.
- किसी भी धनात्मक पूर्णांक k के लिए, ऋणात्मक द्विपद वितरण का एक क्रम होता है| ऋणात्मक-द्विपद रूप से वितरित यादृच्छिक चर Yj, j = 1, ..., के, जैसे कि Y1+ ... + Yk यह ज्यामितीय वितरण है। इसलिए, यह वितरण असीम रूप से विभाज्य है।
- दूसरी ओर, मान लीजिए Dn n ≥ 0 के लिए, Y का nवाँ बाइनरी अंक हो। फिर Dnस्वतंत्र हैं और
- और इस योग में प्रत्येक पद अविभाज्य है।
संबंधित अवधारणाएँ
अविभाज्यता से दूसरे चरम पर अनंत विभाज्यता (संभावना) है।
- क्रैमर का अपघटन प्रमेय - क्रैमर का प्रमेय दर्शाता है कि जबकि सामान्य वितरण अनंत रूप से विभाज्य है, इसे केवल सामान्य वितरण में विघटित किया जा सकता है।
- कोचरन के प्रमेय से पता चलता है कि इन चरों के रैखिक संयोजनों के वर्गों के योग में सामान्य यादृच्छिक चर के वर्गों के योग के अपघटन में पदों में हमेशा स्वतंत्र ची-वर्ग वितरण होते हैं।
यह भी देखें
- क्रैमर का प्रमेय
- कोचरन का प्रमेय
- अनंत विभाज्यता (संभावना)
- वितरण के गुणनखंडन पर खिनचिन का प्रमेय
संदर्भ
- Linnik, Yu. V. and Ostrovskii, I. V. Decomposition of random variables and vectors, Amer. Math. Soc., Providence RI, 1977.
- Lukacs, Eugene, Characteristic Functions, New York, Hafner Publishing Company, 1970.