नेट (गणित): Difference between revisions

From Vigyanwiki
Line 191: Line 191:
इसके विपरीत, मान लें कि <math>y</math> <math>x_\bull</math> का क्लस्टर बिंदु है। माना <math>B</math> युग्मों <math>(U, a)</math> का समुच्चय है। जहाँ <math>U</math>, <math>X</math> में <math>y</math> का विवृत प्रतिवेश है और <math>a \in A</math> ऐसा है कि <math>x_a \in U</math>। मानचित्र <math>h : B \to A</math> मानचित्रण <math>(U, a)</math> से <math>a</math> तब अंतिम है। इसके अलावा, <math>B</math> को गुणनफल क्रम (<math>y</math> के प्रतिवेश समावेशन द्वारा क्रमित है) इसे एक निर्देशित समुच्चय बनाता है, और <math>\left(y_b\right)_{b \in B}</math> द्वारा परिभाषित नेट <math>y_b = x_{h(b)}</math> <math>y</math> में अभिसरण करता है।{{collapse bottom}}
इसके विपरीत, मान लें कि <math>y</math> <math>x_\bull</math> का क्लस्टर बिंदु है। माना <math>B</math> युग्मों <math>(U, a)</math> का समुच्चय है। जहाँ <math>U</math>, <math>X</math> में <math>y</math> का विवृत प्रतिवेश है और <math>a \in A</math> ऐसा है कि <math>x_a \in U</math>। मानचित्र <math>h : B \to A</math> मानचित्रण <math>(U, a)</math> से <math>a</math> तब अंतिम है। इसके अलावा, <math>B</math> को गुणनफल क्रम (<math>y</math> के प्रतिवेश समावेशन द्वारा क्रमित है) इसे एक निर्देशित समुच्चय बनाता है, और <math>\left(y_b\right)_{b \in B}</math> द्वारा परिभाषित नेट <math>y_b = x_{h(b)}</math> <math>y</math> में अभिसरण करता है।{{collapse bottom}}


एक नेट की एक सीमा होती है यदि और केवल यदि उसके सभी सबनेट की सीमाएँ हों। ऐसे में नेट की हर सीमा हर सबनेट की भी एक सीमा होती है।
नेट की एक सीमा होती है यदि और केवल यदि उसके सभी सबनेट की सीमाएँ हों। ऐसे में नेट की प्रत्येक सीमा प्रत्येक सबनेट की भी सीमा होती है।


=== अन्य गुण ===
=== अन्य गुण ===


सामान्य तौर पर, एक अंतरिक्ष में एक जाल <math>X</math> एक से अधिक सीमा हो सकती है, लेकिन यदि <math>X</math> हॉसडॉर्फ स्पेस है, तो नेट की सीमा, यदि यह मौजूद है, अद्वितीय है। इसके विपरीत यदि <math>X</math> हॉसडॉर्फ नहीं है, तो वहां एक नेट मौजूद है <math>X</math> दो अलग-अलग सीमाओं के साथ। इस प्रकार सीमा की विशिष्टता है {{em|equivalent}} अंतरिक्ष पर हॉसडॉर्फ स्थिति के लिए, और वास्तव में इसे परिभाषा के रूप में लिया जा सकता है। यह परिणाम दिशात्मकता की स्थिति पर निर्भर करता है; एक सामान्य प्रीऑर्डर या आंशिक ऑर्डर द्वारा अनुक्रमित एक सेट में हौसडॉर्फ स्पेस में भी अलग सीमा बिंदु हो सकते हैं।
सामान्य तौर पर, अंतराल <math>X</math> में नेट की एक से अधिक सीमा हो सकती है, लेकिन यदि <math>X</math> हॉउसडॉर्फ अंतराल है, तो नेट की सीमा, यदि उपस्थित है, अद्वितीय है। इसके विपरीत, यदि <math>X</math> हॉसडॉर्फ नहीं है, तो <math>X</math> पर दो अलग-अलग सीमाओं के साथ नेट उपस्थित है। इस प्रकार सीमा की विशिष्टता अंतराल पर हॉसडॉर्फ की स्थिति के बराबर है, और वास्तव में इसे परिभाषा के रूप में लिया जा सकता है। यह परिणाम निर्देशन की स्थिति पर निर्भर करता है; एक सामान्य पूर्वक्रम या आंशिक क्रम द्वारा अनुक्रमित समुच्चय में हौसडॉर्फ अंतराल में भी विशिष्ट सीमा बिंदु हो सकते हैं।


== कॉची नेट्स ==
== कॉची नेट्स ==


एक कॉची नेट एकसमान स्थानों पर परिभाषित नेट के लिए [[कॉची अनुक्रम]] की धारणा को सामान्यीकृत करता है।<ref name="willard">{{citation|title=General Topology|series=Dover Books on Mathematics|first=Stephen|last=Willard|publisher=Courier Dover Publications|year=2012|isbn=9780486131788|page=260|url=https://books.google.com/books?id=UrsHbOjiR8QC&pg=PA26}}.</ref>
कॉची नेट एकसमान स्थानों पर परिभाषित नेट के लिए [[कॉची अनुक्रम]] की धारणा को सामान्यीकृत करता है।<ref name="willard">{{citation|title=General Topology|series=Dover Books on Mathematics|first=Stephen|last=Willard|publisher=Courier Dover Publications|year=2012|isbn=9780486131788|page=260|url=https://books.google.com/books?id=UrsHbOjiR8QC&pg=PA26}}.</ref>  
एक शुद्ध <math>x_\bull = \left(x_a\right)_{a \in A}</math> एक है {{em|{{visible anchor|Cauchy net}}}} यदि प्रत्येक [[प्रतिवेश (गणित)]] के लिए <math>V</math> वहां मौजूद <math>c \in A</math> ऐसा कि सभी के लिए <math>a, b \geq c,</math> <math>\left(x_a, x_b\right)</math> का सदस्य है <math>V.</math><ref name="willard"/><ref>{{citation|title=Introduction to General Topology|first=K. D.|last=Joshi|publisher=New Age International|year=1983|isbn=9780852264447|page=356|url=https://books.google.com/books?id=fvCpXrube5wC&pg=PA356}}.</ref> अधिक आम तौर पर, [[कॉची स्पेस]] में, एक नेट <math>x_\bull</math> कॉची है अगर नेट द्वारा उत्पन्न फ़िल्टर [[कॉची फिल्टर]] है।


एक [[टोपोलॉजिकल वेक्टर स्पेस]] (टीवीएस) कहा जाता है {{em|[[Complete topological vector space|complete]]}} अगर हर कॉची नेट किसी बिंदु पर अभिसरण करता है। एक आदर्श स्थान, जो एक विशेष प्रकार का टोपोलॉजिकल वेक्टर स्पेस है, एक पूर्ण टीवीएस (समतुल्य रूप से, एक [[बनच स्थान]]) है यदि और केवल अगर प्रत्येक कॉची अनुक्रम किसी बिंदु पर अभिसरण करता है (एक संपत्ति जिसे कहा जाता है {{em|sequential completeness}}). हालांकि कॉची जालों को मानक स्थानों की पूर्णता का वर्णन करने की आवश्यकता नहीं है, उन्हें अधिक सामान्य (संभवतः गैर-[[सामान्य स्थान]]) टोपोलॉजिकल वेक्टर रिक्त स्थान की पूर्णता का वर्णन करने की आवश्यकता है।
नेट <math>x_\bull = \left(x_a\right)_{a \in A}</math> कॉची नेट है यदि प्रत्येक [[प्रतिवेश (गणित)|प्रतिवेश]] <math>V</math> के लिए <math>c \in A</math> उपस्थित है जैसे कि सभी <math>a, b \geq c,</math> <math>\left(x_a, x_b\right)</math> के लिए <math>V</math> का सदस्य है।<ref name="willard" /><ref>{{citation|title=Introduction to General Topology|first=K. D.|last=Joshi|publisher=New Age International|year=1983|isbn=9780852264447|page=356|url=https://books.google.com/books?id=fvCpXrube5wC&pg=PA356}}.</ref> अधिक प्रायः, [[कॉची स्पेस|कॉची अंतराल]] में, नेट <math>x_\bull</math> कॉची होता है यदि नेट द्वारा उत्पन्न फ़िल्टर [[कॉची फिल्टर|कॉची फ़िल्टर]] है।
 
[[टोपोलॉजिकल वेक्टर स्पेस|सांस्थितिक सदिश अंतराल]] (टीवीएस) को {{em|[[Complete topological vector space|पूर्ण]]}} कहा जाता है यदि प्रत्येक कॉची नेट किसी बिंदु पर अभिसरण करता है। आदर्श अंतराल, जो एक विशेष प्रकार का सांस्थितिक सदिश अंतराल है, पूर्ण टीवीएस (समतुल्य रूप से, [[बनच स्थान|बनच अंतराल]]) है यदि और केवल अगर प्रत्येक कॉची अनुक्रम किसी बिंदु (एक गुण जिसे अनुक्रमिक पूर्णता कहा जाता है) पर अभिसरण करता है। हालांकि कॉची नेट्स की आवश्यकता मानक अंतरालों की पूर्णता का वर्णन करने के लिए नहीं है, उन्हें अधिक सामान्य (संभवतः गैर-[[सामान्य स्थान|सामान्य]]) सांस्थितिक सदिश अंतरालों की पूर्णता का वर्णन करने की आवश्यकता है।


== फिल्टर से संबंध ==
== फिल्टर से संबंध ==
{{See also|Filters in topology#Filters and nets}}
{{See also|सांस्थितिकी में फ़िल्टर § फ़िल्टर और नेट}}


एक फ़िल्टर (गणित) टोपोलॉजी में एक और विचार है जो सामान्य टोपोलॉजिकल रिक्त स्थान में अभिसरण के लिए सामान्य परिभाषा की अनुमति देता है। दो विचार इस अर्थ में समतुल्य हैं कि वे अभिसरण की समान अवधारणा देते हैं।<ref>{{Cite web|url=http://www.math.wichita.edu/~pparker/classes/handout/netfilt.pdf|title=संग्रहीत प्रति|access-date=2013-01-15|archive-date=2015-04-24|archive-url=https://web.archive.org/web/20150424204738/http://www.math.wichita.edu/~pparker/classes/handout/netfilt.pdf|url-status=dead }}</ref> अधिक विशेष रूप से, प्रत्येक फ़िल्टर आधार के लिए a {{em|associated net}} का निर्माण किया जा सकता है, और फिल्टर बेस के अभिसरण का तात्पर्य संबंधित नेट के अभिसरण से है - और इसके विपरीत (प्रत्येक नेट के लिए एक फिल्टर बेस है, और नेट के अभिसरण का तात्पर्य फिल्टर बेस के अभिसरण से है)।<ref name="Bartle">R. G. Bartle, Nets and Filters In Topology, American Mathematical Monthly, Vol. 62, No. 8 (1955), pp. 551–557.</ref> उदाहरण के लिए, कोई भी net <math>\left(x_a\right)_{a \in A}</math> में <math>X</math> पूंछ के एक फिल्टर बेस को प्रेरित करता है <math>\left\{\left\{x_a : a \in A, a_0 \leq a\right\} : a_0 \in A\right\}</math> जहां फ़िल्टर अंदर है <math>X</math> इस फ़िल्टर बेस द्वारा उत्पन्न को नेट कहा जाता है {{em|eventuality filter}}. यह पत्राचार किसी भी प्रमेय के लिए अनुमति देता है जिसे एक अवधारणा के साथ दूसरे के साथ सिद्ध किया जा सकता है।<ref name="Bartle" />उदाहरण के लिए, एक टोपोलॉजिकल स्पेस से दूसरे तक किसी फ़ंक्शन की निरंतरता को या तो डोमेन में नेट के अभिसरण द्वारा विशेषता दी जा सकती है, जो कोडोमेन में संबंधित नेट के अभिसरण को दर्शाता है, या फ़िल्टर बेस के साथ एक ही कथन द्वारा।
फ़िल्टर टोपोलॉजी में एक और विचार है जो सामान्य सांस्थितिक अंतराल में अभिसरण के लिए सामान्य परिभाषा की अनुमति देता है। दो विचार इस अर्थ में समतुल्य हैं कि वे अभिसरण की समान अवधारणा देते हैं।<ref>{{Cite web|url=http://www.math.wichita.edu/~pparker/classes/handout/netfilt.pdf|title=संग्रहीत प्रति|access-date=2013-01-15|archive-date=2015-04-24|archive-url=https://web.archive.org/web/20150424204738/http://www.math.wichita.edu/~pparker/classes/handout/netfilt.pdf|url-status=dead }}</ref> अधिक विशेष रूप से, प्रत्येक फ़िल्टर आधार के लिए एक संबद्ध जाल का निर्माण किया जा सकता है, और फिल्टर आधार के अभिसरण का तात्पर्य संबंधित नेट के अभिसरण से है - और इसके विपरीत (प्रत्येक नेट के लिए फिल्टर आधार है, और नेट के अभिसरण का तात्पर्य फिल्टर आधार के अभिसरण से है)।<ref name="Bartle">R. G. Bartle, Nets and Filters In Topology, American Mathematical Monthly, Vol. 62, No. 8 (1955), pp. 551–557.</ref> उदाहरण के लिए, <math>X</math> में कोई भी नेट <math>\left(x_a\right)_{a \in A}</math> पश्चभाग <math>\left\{\left\{x_a : a \in A, a_0 \leq a\right\} : a_0 \in A\right\}</math> के फ़िल्टर आधार को प्रेरित करता है जहां इस फ़िल्टर आधार द्वारा उत्पन्न <math>X</math> में फ़िल्टर को नेट की घटना फ़िल्टर कहा जाता है। यह समतुल्यता किसी भी प्रमेय के लिए अनुमति देती है जिसे एक अवधारणा के साथ दूसरे के साथ सिद्ध किया जा सकता है।<ref name="Bartle" /> उदाहरण के लिए, एक सांस्थितिक अंतराल से दूसरे तक किसी फलन की सातत्य को या तो क्षेत्र में नेट के अभिसरण द्वारा विशेषता दी जा सकती है, जो सहक्षेत्र में संबंधित नेट के अभिसरण को दर्शाता है, या फ़िल्टर आधार के साथ एक ही कथन द्वारा।  


रॉबर्ट जी। बार्टले का तर्क है कि उनकी समानता के बावजूद, दोनों अवधारणाओं का होना उपयोगी है।<ref name="Bartle" />उनका तर्क है कि अनुक्रमों के सादृश्य में प्राकृतिक प्रमाण और परिभाषाएँ बनाने के लिए जाल पर्याप्त हैं, विशेष रूप से अनुक्रमिक तत्वों का उपयोग करने वाले, जैसे कि [[विश्लेषण]] में सामान्य है, जबकि बीजगणितीय टोपोलॉजी में फ़िल्टर सबसे अधिक उपयोगी हैं। किसी भी मामले में, वह दिखाता है कि सामान्य टोपोलॉजी में विभिन्न प्रमेयों को साबित करने के लिए संयोजन में दोनों का उपयोग कैसे किया जा सकता है।
रॉबर्ट जी. बार्टले का तर्क है कि उनकी समानता के बावजूद, दोनों अवधारणाओं का होना उपयोगी है।<ref name="Bartle" /> उनका तर्क है कि अनुक्रमों के सादृश्य में प्राकृतिक प्रमाण और परिभाषाएँ बनाने के लिए नेट पर्याप्त हैं, विशेष रूप से अनुक्रमिक तत्वों का उपयोग करने वाले, जैसे कि [[विश्लेषण]] में सामान्य है, जबकि बीजगणितीय सांस्थितिकी में फ़िल्टर सबसे अधिक उपयोगी हैं। किसी भी स्थिति में, वह दिखाता है कि सामान्य सांस्थितिकी में विभिन्न प्रमेयों को सिद्ध करने के लिए संयोजन में दोनों का उपयोग कैसे किया जा सकता है।


== [[सीमा श्रेष्ठ]] ==
== [[सीमा श्रेष्ठ]] ==

Revision as of 16:34, 11 May 2023

गणित में, विशेष रूप से सामान्य सांस्थितिकी और संबंधित शाखाओं में, नेट या मूर-स्मिथ अनुक्रम अनुक्रम की धारणा का सामान्यीकरण है। संक्षेप में, अनुक्रम एक ऐसा फलन है जिसका क्षेत्र प्राकृतिक संख्याएं हैं। इस फलन का सहक्षेत्र प्रायः कुछ सांस्थितिक अंतराल होता है।

अनुक्रम की धारणा को सामान्य बनाने के लिए प्रेरणा यह है कि, सांस्थितिकी के संदर्भ में, अनुक्रम सांस्थितिक अंतराल के बीच फलनों के बारे में सभी सूचनाओं को पूरी तरह से एन्कोड नहीं करते हैं। विशेष रूप से, निम्नलिखित दो स्थितियाँ, सामान्य रूप से, सांस्थितिक अंतराल और के बीच के मानचित्र के समतुल्य नहीं हैं-

  1. मानचित्र सांस्थितिक अर्थों में सतत है
  2. किसी भी बिंदु में, और में किसी भी अनुक्रम को में परिवर्तित करने के लिए, इस अनुक्रम के साथ की संरचना (अनुक्रमिक अर्थ में सतत) में परिवर्तित हो जाती है।

जबकि शर्त 1 हमेशा शर्त 2 की गारंटी देती है, यदि सांस्थितिक अंतराल दोनों प्रथम-गणनीय नहीं हैं, तो इसका विपरीत आवश्यक रूप से सत्य नहीं है। विशेष रूप से, दो शर्तें मेट्रिक अंतरालों के लिए समान हैं। वे अंतराल जिनके लिए व्युत्क्रम धारण करती है अनुक्रमिक अंतराल हैं।

नेट की अवधारणा, प्रथम बार 1922 में ई. एच. मूर और हरमन एल. स्मिथ द्वारा पेश की गई थी,[1] जो अनुक्रम की धारणा को सामान्य बनाने के लिए है। ताकि उपरोक्त शर्तें ("अनुक्रम" को शर्त 2 में "नेट" द्वारा प्रतिस्थापित किया जा रहा है) वास्तव में सांस्थितिक अंतराल के सभी मानचित्रों के बराबर हैं। विशेष रूप से, गणनीय रैखिक रूप से क्रमित समुच्चय पर परिभाषित होने के स्थान पर, नेट को मनमाने ढंग से निर्देशित समुच्चय पर परिभाषित किया जाता है। यह प्रमेय के समान प्रमेय की अनुमति देता है कि उपरोक्त शर्त 1 और 2 सांस्थितिक अंतराल के संदर्भ में धारण करने के बराबर हैं, जो जरूरी नहीं कि एक बिंदु के आसपास गणनीय या रैखिक रूप से क्रमित प्रतिवेश आधार हो। इसलिए, जबकि अनुक्रम सांस्थितिक अंतराल के बीच फलनों के बारे में पर्याप्त जानकारी को एनकोड नहीं करते हैं, नेट करते हैं, क्योंकि सांस्थितिक अंतराल में विवृत समुच्चय का संग्रह व्यवहार में निर्देशित समुच्चय की तरह होता है। "नेट" शब्द जॉन एल. केली द्वारा दिया गया था।[2][3]

नेट सांस्थितिकी में उपयोग किए जाने वाले कई उपकरणों में से एक हैं, जो कुछ अवधारणाओं को सामान्य बनाने के लिए उपयोग किए जाते हैं जो मेट्रिक अंतरालों के संदर्भ में पर्याप्त सामान्य नहीं हो सकते हैं। संबंधित धारणा, फ़िल्टर की, 1937 में हेनरी कार्टन द्वारा विकसित की गई थी।

परिभाषाएँ

कोई भी फलन जिसका क्षेत्र निर्देशित समुच्चय है, उसे नेट कहा जाता है। यदि यह फलन किसी समुच्चय में मान लेता है तो इसे में नेट के रूप में भी संदर्भित किया जा सकता है।

स्पष्ट रूप से, में नेट के रूप का फलन है जहां कुछ निर्देशित समुच्चय है। नेट के क्षेत्र के अल्पांशों को इसका सूचकांक कहा जाता है। एक निर्देशित समुच्चय अरिक्त समुच्चय है जो पूर्वक्रम के साथ होता है, प्रायः स्वचालित रूप से (जब तक अन्यथा इंगित नहीं किया जाता है) द्वारा दर्शाया जाता है, गुण के साथ यह भी (ऊपर की ओर) निर्देशित होता है, जिसका अर्थ है कि किसी भी के लिए कुछ का अस्तित्व है जैसे कि और । शब्दों में, इस गुण का अर्थ है कि किसी भी दो अल्पांशों () के दिए जाने पर, सदैव कुछ ऐसा अल्पांश होता है जो दोनों के "ऊपर" होता है (अर्थात, उनमें से प्रत्येक से अधिक या उसके बराबर) इस तरह, निर्देशित समुच्चय गणितीय रूप से परिशुद्ध तरीके से "एक दिशा" की धारणा को सामान्यीकृत करते हैं। प्राकृतिक संख्या सामान्य पूर्णांक तुलना पूर्वक्रम के साथ मिलकर निर्देशित समुच्चय का आदर्श उदाहरण बनाती हैं। वास्तव में, नेट जिसका क्षेत्र प्राकृतिक संख्या है, एक अनुक्रम है क्योंकि परिभाषा के अनुसार, में अनुक्रम से में केवल एक फलन है। यह इस प्रकार है कि नेट्स अनुक्रमों का सामान्यीकरण है। महत्वपूर्ण रूप से, हालांकि, प्राकृतिक संख्याओं के विपरीत, निर्देशित समुच्चयों को कुल क्रम या आंशिक क्रम होने की आवश्यकता नहीं है। इसके अलावा, निर्देशित समुच्चय में सबसे बड़े अल्पांश और/या अधिकतम अल्पांश होने की अनुमति है, यही कारण है कि नेट का उपयोग करते समय, प्रेरित विशुद्ध पूर्वक्रम के स्थान पर मूल (अविशुद्ध) पर्वक्रम , विशेष रूप से, यदि निर्देशित समुच्चय, में सबसे बड़ा अल्पांश है तो कोई भी उपस्थित नहीं है, जैसे कि (इसके विपरीत, वहाँ सदैव कुछ उपस्थित हैं जैसे कि

नेट को प्रायः अंकन का उपयोग करके निरूपित किया जाता है जो अनुक्रमों के साथ उपयोग किए जाने वाले (और प्रेरित) के समान होता है। में नेट को द्वारा दर्शाया जा सकता है, जहां अन्यथा सोचने का कोई कारण नहीं है, यह स्वचालित रूप से माना जाना चाहिए कि समुच्चय निर्देशित है और इससे संबंधित पूर्वक्रम को द्वारा दर्शाया जाता है। हालाँकि, नेट के लिए अंकन कुछ लेखकों के साथ भिन्न होता है, उदाहरण के लिए, कोष्ठक के स्थान पर कोण वाले कोष्ठक का उपयोग करते हैं। में नेट को के रूप में भी लिखा जा सकता है, जो इस तथ्य को व्यक्त करता है कि यह नेट एक फलन है, जिसका मान इसके क्षेत्र में तत्व पर द्वारा दर्शाया जाता है, बजाय सामान्य कोष्ठक संकेतन के जिसका प्रायः उपयोग किया जाता है फलनों के साथ (यह पादांक नोटेशन अनुक्रमों से लिया जा रहा है)। जैसे कि बीजगणितीय सांस्थितिकी के क्षेत्र में, भरी हुई डिस्क या "बुलेट" उस स्थान को दर्शाती है जहां नेट के लिए तर्क (अर्थात, नेट के क्षेत्र के अल्पांश ) रखे गए हैं यह महत्त्व देने में सहायता करता है कि नेट एक फलन है और उन सूचकांक और अन्य प्रतीकों की संख्या को भी कम करता है जिन्हें बाद में संदर्भित करते समय लिखा जाना चाहिए।

नेट मुख्य रूप से विश्लेषण और सांस्थितिकी के क्षेत्र में उपयोग किए जाते हैं, जहां उनका उपयोग कई महत्वपूर्ण सांस्थितिक गुणों को चित्रित करने के लिए किया जाता है, जो (सामान्य रूप से), अनुक्रमों को चिह्नित (अनुक्रमों की यह कमी अनुक्रमिक अंतराल और फ्रेचेट-उरीसोन अंतराल के अध्ययन को प्रेरित करती है) करने में असमर्थ हैं। नेट फिल्टर से घनिष्ठ रूप से संबंधित हैं, जिनका उपयोग प्रायः सांस्थितिकी में भी किया जाता है। प्रत्येक नेट फिल्टर से जुड़ा हो सकता है और प्रत्येक फिल्टर नेट से जुड़ा हो सकता है, जहां इन संबद्ध वस्तुओं के गुणों को एक साथ जोड़ा जाता है (अधिक विवरण के लिए सांस्थितिकी में फिल्टर के बारे में लेख देखें)। नेट प्रत्यक्ष रूप से अनुक्रमों का सामान्यीकरण करते हैं और वे प्रायः अनुक्रमों के समान ही उपयोग किए जा सकते हैं। नतीजतन, नेट का उपयोग करने के लिए सीखने की अवस्था प्रायः फिल्टर की तुलना में बहुत कम होती है, यही वजह है कि कई गणितज्ञ, विशेष रूप से विश्लेषक, उन्हें फिल्टर पर पसंद करते हैं। हालांकि, फिल्टर, और विशेष रूप से अल्ट्राफिल्टर, नेट पर कुछ महत्वपूर्ण तकनीकी लाभ हैं, जिसके परिणामस्वरूप अंततः विश्लेषण और सांस्थितिकी के क्षेत्र के बाहर फिल्टर की तुलना में नेट का सामना बहुत कम होता है।

सबनेट केवल के निर्देशित उपसमुच्चय के लिए नेट का प्रतिबंध नहीं है, परिभाषा के लिए लिंक किए गए पृष्ठ को देखें।

नेट्स के उदाहरण

प्रत्येक अरिक्त पूर्णतः क्रमित समुच्चय को निर्देशित किया जाता है। इसलिए, ऐसे समुच्चय का प्रत्येक फलन एक नेट होता है। विशेष रूप से, सामान्य क्रम वाली प्राकृतिक संख्याएं इस तरह के समुच्चय का निर्माण करती हैं, और अनुक्रम प्राकृतिक संख्याओं पर फलन होता है, इसलिए प्रत्येक अनुक्रम नेट होता है।

एक अन्य महत्वपूर्ण उदाहरण इस प्रकार है। सांस्थितिक अंतराल में एक बिंदु दिया गया है, माना वाले सभी प्रतिवेशों के समुच्चय को दर्शाता है। फिर निर्देशित समुच्चय है, जहां विपरीत समावेशन द्वारा दिशा दी जाती है, ताकि यदि और केवल यदि , में निहित हो। माना के लिए को में बिंदु हैं। तब नेट है। जैसे ही के संबंध में बढ़ता है, बिंदु नेट में, के घटते प्रतिवेश में लाई के लिए विवश हैं, इसलिए सहज रूप से बोलना, हम इस विचार की ओर अग्रसर हैं कि को किसी अर्थ में की ओर प्रवृत्त होना चाहिए। हम इस सीमित अवधारणा को सटीक बना सकते हैं।

एक अनुक्रम का सबनेट आवश्यक नहीं कि अनुक्रम हो।[4] उदाहरण के लिए, मान लीजिए और मान लीजिए प्रत्येक के लिए, ताकि सतत शून्य क्रम हो। मान लीजिए को सामान्य क्रम द्वारा निर्देशित किया जाता है और प्रत्येक के लिए है। को को की सीमा मान कर परिभाषित करें। मानचित्र क्रम आकारिकी है जिसका चित्र इसके सहक्षेत्र में अंतिम है और प्रत्येक के लिए है। इससे पता चलता है कि अनुक्रम का एक सबनेट है (जहां यह सबनेट का अनुवर्ती नहीं है क्योंकि यह अनुक्रम भी नहीं है क्योंकि इसका क्षेत्र अगणनीय समुच्चय है)।

नेट की सीमाएँ

नेट को समुच्चय में अंततः या अवशिष्ट रूप से कहा जाता है यदि कुछ उपस्थित है जैसे कि प्रत्येक के साथ बिंदु । और इसे में बार-बार या अंतिम रूप से कहा जाता है यदि प्रत्येक के लिए कुछ उपस्थित है जैसे कि और [4] बिंदु को नेट का एक सीमा बिंदु (क्रमशः, क्लस्टर बिंदु) कहा जाता है यदि वह नेट अंततः (क्रमशः, अंतिम रूप से) उस बिंदु के प्रत्येक प्रतिवेश में होता है।

स्पष्ट रूप से, बिंदु को नेट का संचय बिंदु या गुच्छ बिंदु कहा जाता है यदि के प्रत्येक प्रतिवेश के लिए, नेट प्रायः में होता है।[4]

बिंदु को में नेट की सीमा बिंदु या सीमा कहा जाता है यदि (और केवल अगर)

के प्रत्येक विवृत प्रतिवेश के लिए, नेट अंततः में है,

किस स्थिति में, इस नेट को तब की ओर अभिसरण करने के लिए और को एक सीमा के रूप में रखने के लिए भी कहा जाता है।

सहज रूप से, नेट के अभिसरण का अर्थ है कि मान आते हैं और उतने ही समीप रहते हैं जितना हम चाहते हैं कि पर्याप्त बड़ा के लिए हो। एक बिंदु के प्रतिवेश प्रणाली पर ऊपर दिया गया उदाहरण नेट वास्तव में इस परिभाषा के अनुसार में अभिसरण करता है।

सीमाओं के लिए संकेतन

यदि नेट में बिंदु पर अभिसरित होता है तो इस तथ्य को निम्न में से किसी को लिखकर व्यक्त किया जा सकता है-

जहां अगर सांस्थितिक अंतराल संदर्भ से स्पष्ट है तो " में" शब्दों को छोड़ा जा सकता है। यदि में और यदि में यह सीमा अद्वितीय है ( में अद्वितीयता का अर्थ है कि यदि ऐसा है कि तो आवश्यक रूप से ) तो इस तथ्य को लिखकर दर्शाया जा सकता है
जहां तीर के स्थान पर बराबर चिह्न का उपयोग किया जाता है।[5] हॉसडॉर्फ अंतराल में, प्रत्येक नेट की अधिकतम एक सीमा होती है, इसलिए हॉसडॉर्फ अंतराल में अभिसारी नेट की सीमा सदैव अद्वितीय होती है।[5] इसके स्थान पर कुछ लेखक "" का अर्थ के लिए संकेतन का उपयोग करते हैं, बिना सीमा के अद्वितीय होने की आवश्यकता के बिना हालाँकि, यदि इस संकेतन को इस तरह से परिभाषित किया जाता है तो बराबर चिह्न अब सकर्मक संबंध को दर्शाने की गारंटी नहीं है और इसलिए अब समानता को नहीं दर्शाता है। विशेष रूप से, विशिष्टता आवश्यकता के बिना, यदि भिन्न हैं और यदि में प्रत्येक की सीमा भी है तो और को असत्य होने के बावजूद (बराबर चिह्न का उपयोग करके) लिखा जा सकता है।

आधार और उप आधार

पर सांस्थितिकी के लिए उप आधार दिया गया है (जहां ध्यान दें कि सांस्थितिकी के लिए प्रत्येक आधार भी उप आधार है) और दिया गया बिंदु नेट में अभिसरण करता है यदि और केवल यदि यह अंततः के प्रत्येक प्रतिवेश में है। यह लक्षण वर्णन दिए गए बिंदु के प्रतिवेश के उप आधारों (और इसी तरह प्रतिवेश के आधार) तक फैला हुआ है।

मेट्रिक अंतराल में अभिसरण

मान लीजिए कि मेट्रिक अंतराल (या एक स्यूडोमेट्रिक अंतराल) है और मेट्रिक सांस्थितिकी से संपन्न है। यदि बिंदु है और नेट है, तो में यदि और केवल यदि जहां वास्तविक संख्याओं का नेट है। सामान्य अंग्रेजी में, यह विशेषता कहती है कि नेट मेट्रिक अंतराल में बिंदु पर अभिसरण करता है यदि और केवल अगर नेट और बिंदु के बीच की दूरी शून्य हो जाती है। यदि एक आदर्श स्थान (या एक सेमिनोर्म्ड अंतराल) है तो में यदि और केवल यदि में जहां है।

सांस्थितिक उप-अंतरालों में अभिसरण

यदि समुच्चय द्वारा प्रेरित उप अंतराल सांस्थितिकी से संपन्न है, तो में यदि और केवल अगर में। इस तरह, नेट दिए गए बिंदु पर अभिसरण करता है या नहीं, यह सवाल पूरी तरह से इस सांस्थितिक उप अंतराल पर निर्भर करता है जिसमें और (अर्थात, बिंदु) नेट का चित्र सम्मिलित है।

कार्तीय गुणनफल में सीमाएं

गुणनफल अंतराल में नेट की सीमा होती है यदि और केवल यदि प्रत्येक प्रक्षेपण की सीमा होती है।

स्पष्ट रूप से, मान लीजिए सांस्थितिक अंतराल हो, उनके कार्तीय गुणनफल को समाप्त करें

गुणनफल सांस्थितिकी के साथ, और वह प्रत्येक सूचकांक के लिए द्वारा विहित प्रक्षेपण को दर्शाता है
मान लीजिए द्वारा निर्देशित में नेट है और प्रत्येक सूचकांक के लिए
"रोधन को के परिणाम को निरूपित करें, जिसके परिणामस्वरूप नेट होता है, यह कभी-कभी फलन संरचना के संदर्भ में इस परिभाषा के बारे में सोचने के लिए उपयोगी होता है- नेट प्रक्षेपण अर्थात के साथ नेट की संरचना के बराबर है किसी दिए गए बिंदु के लिए नेट गुणन अंतराल में में अभिसरण करता है यदि और केवल यदि प्रत्येक सूचकांक के लिए, में में अभिसरण करता है।[6] और जब भी में पर नेट समूहबद्ध होता है तो प्रत्येक सूचकांक के लिए समूहबद्ध पर होता है।[7] हालांकि, परिवर्तित सामान्य रूप से नहीं होता है।[7] उदाहरण के लिए, मान लें कि और अनुक्रम को दर्शाता है, जो और के बीच वैकल्पिक होता है। फिर और , में और दोनों के क्लस्टर बिंदु हैं, लेकिन का क्लस्टर बिंदु नहीं है क्योंकि त्रिज्या की विवृत गोलक पर केंद्रित है, जिसमें एक भी बिंदु सम्मिलित नहीं है।

टाइकोनॉफ की प्रमेय और चयन के स्वयंसिद्ध से संबंध

यदि कोई नहीं दिया गया है, लेकिन प्रत्येक के लिए कुछ उपस्थित है जैसे कि में है तो द्वारा परिभाषित टपल में की एक सीमा होगी। हालाँकि, यह निष्कर्ष निकालने के लिए चयन के स्वयंसिद्ध को ग्रहण करने की आवश्यकता हो सकती है कि यह टपल उपस्थित है कुछ स्थितियों में चयन की अभिगृहीत की आवश्यकता नहीं होती है, जैसे कि जब परिमित होता है या जब प्रत्येक नेट की अद्वितीय सीमा होती है (क्योंकि तब इसके बीच चयन करने के लिए कुछ नहीं होता है), जो उदाहरण के लिए होता है, जब प्रत्येक एक हॉसडॉर्फ अंतराल है। यदि अनंत है और खाली नहीं है, तो चयन के स्वयंसिद्ध (सामान्य रूप से) अभी भी यह निष्कर्ष निकालने की आवश्यकता होगी कि अनुमान विशेषण मानचित्र हैं।

चयन का स्वयंसिद्ध टाइकोनॉफ के प्रमेय के बराबर है, जिसमें कहा गया है कि सघन सांस्थितिक अंतराल के किसी भी संग्रह का गुणन सघन है। लेकिन यदि प्रत्येक सघन अंतराल हॉसडॉर्फ भी है, तो तथाकथित "सघन हौसडॉर्फ अंतराल के लिए टाइकोनॉफ प्रमेय" का उपयोग किया जा सकता है, जो अल्ट्राफिल्टर लेम्मा के बराबर है और इसलिए चयन के स्वयंसिद्ध से दृढ़ता से दुर्बल है। ऊपर दिए गए नेट अभिसरण के विशेषीकरण वर्णन का उपयोग करके टाइकोनॉफ के प्रमेय के दोनों संस्करणों के लघु प्रमाण देने के लिए नेट का उपयोग इस तथ्य के साथ किया जा सकता है कि स्थान सघन है यदि और केवल अगर प्रत्येक नेट में एक अभिसारी सबनेट है।

नेट के क्लस्टर बिंदु

बिंदु किसी दिए गए नेट का एक क्लस्टर बिंदु है यदि और केवल यदि इसका उपसमुच्चय है जो में अभिसरण करता है।[8] यदि , में एक नेट है, तो में के सभी क्लस्टर बिंदुओं का समुच्चय बराबर है[7]

जहाँ प्रत्येक के लिए। यदि , के कुछ सबनेट का क्लस्टर बिंदु है तो भी का क्लस्टर बिंंदु है।[8]

अल्ट्रानेट

समुच्चय में नेट को सार्वभौमिक नेट या अल्ट्रानेट कहा जाता है यदि प्रत्येक उपसमुच्चय के लिए, अंततः में है या अंततः पूरक में है।[4] अल्ट्रानेट अल्ट्राफिल्टर से निकटता से संबंधित हैं।

प्रत्येक सतत नेट अल्ट्रानेट है। अल्ट्रानेट का प्रत्येक सबनेट एक अल्ट्रानेट होता है।[7] प्रत्येक नेट का कुछ सबनेट होता है जो कि अल्ट्रानेट होता है।[4] यदि , में अल्ट्रानेट है और फलन है तो में अल्ट्रानेट है।[4]

पर एक अल्ट्रानेट क्लस्टर दिया गया है यदि और केवल यह में परिवर्तित होता है।[4]

नेट की सीमाओं के उदाहरण

अनुक्रम की प्रत्येक सीमा और किसी फलन की सीमा की व्याख्या नेट की सीमा के रूप में की जा सकती है (जैसा कि नीचे वर्णित है)।

रीमैन समाकल के मान की परिभाषा को रीमैन योग के नेट की सीमा के रूप में व्याख्या किया जा सकता है जहां नेट का निर्देशित समुच्चय समाकलन के अंतराल के सभी विभाजनों का समुच्चय है, आंशिक रूप से समावेशन द्वारा आदेशित है।

प्रोटोटाइप के साथ सभी फलनों के समुच्चय को कार्तीय गुणनफल के रूप में व्याख्या करें (टपल के साथ फलन की पहचान करके और इसके विपरीत) और इसे गुणनफल सांस्थितिकी के साथ समाप्त करें। पर यह (गुणनफल) सांस्थितिकी बिंदुवार अभिसरण की सांस्थितिकी के समान है। माना सभी फलनों के समुच्चय को इंगित करता है जो कि प्रत्येक स्थान के बराबर हैं, बजाय इसके कि बहुत से बिंदु हैं (अर्थात, जैसे कि समुच्चय परिमित है) फिर सतत फलन , में के समापन होने से संबंधित है, अर्थात, [7] यह में नेट बनाकर सिद्ध किया जाएगा जो कि में अभिसरण करता है। हालाँकि, में ऐसा कोई अनुक्रम उपस्थित नहीं है जो में अभिसरण करता है[9] जो इसे उदाहरण बनाता है जहाँ (गैर-अनुक्रम) नेट का उपयोग किया जाना चाहिए क्योंकि केवल अनुक्रम वांछित निष्कर्ष तक नहीं पहुँच सकते है। सभी के लिए यदि और केवल अगर की घोषणा करके सामान्य तरीके से के अल्पांशों की तुलना करें। यह बिंदुवार तुलना आंशिक क्रम है जो को एक निर्देशित समुच्चय बनाता है क्योंकि किसी भी को दिए जाने के बाद से उनका बिंदुवार न्यूनतम से संबंधित है और और को संतुष्ट करता है। यह आंशिक क्रम पहचान मानचित्र ( द्वारा परिभाषित) को -मूल्यवान नेट में बदल देता है। यह नेट में के लिए बिंदुवार परिवर्तित होता है जिसका अर्थ है कि में के समापन होने के अंतर्गत आता है।

उदाहरण

सांस्थितिक अंतराल में अनुक्रम

सांस्थितिक अंतराल में अनुक्रम को पर परिभाषित में नेट माना जा सकता है।

नेट अंततः के उपसमुच्चय में होता है यदि वहाँ एक उपस्थित है जैसे कि प्रत्येक पूर्णांक के लिए बिंदु में है।

तो यदि और केवल यदि के प्रत्येक प्रतिवेश के लिए, नेट अंततः में है।

नेट प्रायः के उपसमुच्चय में होता है यदि और केवल अगर प्रत्येक के लिए कुछ पूर्णांक उपस्थित होता है जैसे कि अर्थात, यदि और केवल अगर अनुक्रम के असीमित कई अल्पांश में हैं। इस प्रकार बिंदु नेट का एक क्लस्टर बिंदु है यदि और केवल यदि के प्रत्येक प्रतिवेश में अनुक्रम के असीम रूप से कई अल्पांश सम्मिलित हैं।

मेट्रिक अंतराल से सांस्थितिक अंतराल तक फलन

मेट्रिक अंतराल में बिंदु को ठीक करें जिसमें कम से कम दो बिंदु हों (जैसे कि जहां यूक्लिडियन मेट्रिक के साथ मूल है, उदाहरण के लिए) और समुच्चय को से दूरी के अनुसार विपरीत रूप से निर्देशित करें कि यदि और केवल यदि है। दूसरे शब्दों में, संबंध " के रूप में कम से कम समान दूरी है", ताकि इस संबंध के संबंध में "पर्याप्त रूप से बड़ा" का अर्थ " के काफी समीप" हो। क्षेत्र के साथ किसी भी फलन को दिए जाने पर के लिए इसका प्रतिबंध द्वारा निर्देशित नेट के रूप में विहित रूप से व्याख्या किया जा सकता है।[7]

नेट अंततः सांस्थितिक अंतराल के उपसमुच्चय में है यदि और केवल अगर कुछ उपस्थित है जैसे कि प्रत्येक के लिए को संतुष्ट करने के लिए बिंदु में है। इस तरह का नेट में दिए गए बिंदु में परिवर्तित होता है यदि और केवल अगर सामान्य अर्थों में (जिसका अर्थ है कि के प्रत्येक प्रतिवेश के लिए, अंततः में है)।[7]

नेट प्रायः के उपसमुच्चय में होता है यदि और केवल अगर प्रत्येक के लिए के साथ कुछ उपस्थित है जैसे कि में है। नतीजतन, बिंदु नेट का क्लस्टर बिंदु है यदि और केवल अगर के प्रत्येक प्रतिवेश के लिए, नेट प्रायः में होता है।

सुव्यवस्थित समुच्चय से सांस्थितिक अंतराल में फलन

सीमा बिंदु के साथ सुव्यवस्थित समुच्चय पर विचार करें और फलन से सांस्थितिक अंतराल तक। यह फलन पर नेट है। यह अंततः के उपसमुच्चय में होता है यदि कोई उपस्थित है, जैसे कि प्रत्येक के लिए बिंदु में है

तो यदि और केवल यदि के प्रत्येक प्रतिवेश के लिए, अंततः में है।

नेट प्रायः के उपसमुच्चय में होता है यदि और केवल यदि प्रत्येक के लिए कुछ उपस्थित है जैसे कि

एक बिंदु नेट का क्लस्टर बिंदु है यदि और केवल यदि के प्रत्येक प्रतिवेश के लिए, नेट प्रायः में होता है।

प्रथम उदाहरण के साथ इसकी एक विशेष स्थिति है।

क्रमसूचक-अनुक्रमित अनुक्रम भी देखें।

सबनेट

नेट के लिए "अनुक्रम" का एनालॉग "सबनेट" की धारणा है। "सबनेट" की कई अलग-अलग गैर-समकक्ष परिभाषाएँ हैं और यह लेख 1970 में स्टीफन विलार्ड द्वारा प्रस्तुत परिभाषा का उपयोग करेगा,[10] जो इस प्रकार है- यदि और नेट हैं तो को का सबनेट या विलार्ड-सबनेट[10] कहा जाता है यदि कोई क्रम-संरक्षण मानचित्र उपस्थित है ऐसा है कि का अंतिम उपसमुच्चय है और

मानचित्र को क्रम-संरक्षण और क्रम समरूपता कहा जाता है यदि जब भी तो । समुच्चय में अंतिम होने का अर्थ है कि प्रत्येक के लिए, कुछ उपस्थित हैं जैसे कि

गुण

वस्तुतः सांस्थितिकी की सभी अवधारणाओं को नेट और सीमाओं की भाषा में फिर से परिभाषित किया जा सकता है। यह अंतर्ज्ञान को निर्देशित करने के लिए उपयोगी हो सकता है क्योंकि नेट की सीमा की धारणा अनुक्रम की सीमा के समान ही है। निम्नलिखित प्रमेय और लेम्मा इस समानता को दृढ़ करने में सहायता करती हैं-

सांस्थितिक गुणों की विशेषता

संवृत्त समुच्चय और समापन

उपसमुच्चय , में संवृत्त है यदि और केवल अगर में प्रत्येक अभिसरण नेट का प्रत्येक सीमा बिंदु आवश्यक रूप से से संबंधित है। स्पष्ट रूप से, उपसमुच्चय संवृत्त हो जाता है यदि और केवल अगर जब भी और में नेट मान है (जिसका अर्थ है कि सभी के लिए ) जैसे कि में , तो आवश्यक रूप से

अधिक प्रायः, यदि कोई उपसमुच्चय है तो बिंदु , के संवृत्त होने पर है और केवल तभी होता है जब में सीमा के साथ नेट उपस्थित होता है और ऐसा होता है कि प्रत्येक सूचकांक के लिए होता है।[8]

सांस्थितिकी के विवृत समुच्चय और विशेषताएँ

उपसमुच्चय विवृत है यदि और केवल अगर में कोई नेट के बिंदु पर अभिसरण नहीं करता है।[11] इसके अलावा, उपसमुच्चय विवृत है यदि और केवल अगर के अल्पांश में परिवर्तित होने वाला प्रत्येक नेट अंततः में समाहित है। यह "विवृत उपसमुच्चय" की ये विशेषताएँ हैं जो नेट को सांस्थितिकी को चिह्नित करने की अनुमति देती हैं। सांस्थितिकी को संवृत्त उपसमुच्चय द्वारा भी चित्रित किया जा सकता है क्योंकि समुच्चय विवृत होता है और केवल यदि इसका पूरक संवृत्त हो। तो नेट के संदर्भ में "संवृत्त समुच्चय" की विशेषताएँ भी सांस्थितिकी को चिह्नित करने के लिए उपयोग की जा सकती हैं।

सातत्य

सांस्थितिक अंतराल के बीच फलन किसी दिए गए बिंदु पर सतत है यदि और केवल यदि इसके क्षेत्र में प्रत्येक नेट के लिए यदि तो में तो में है।[8] अधिक संक्षेप में कहा गया है, फलन सतत है यदि और केवल अगर जब भी में तो में। सामान्य तौर पर, यह कथन सत्य नहीं होगा यदि "नेट" शब्द को "अनुक्रम" से बदल दिया गया हो; अर्थात्, यदि प्रथम-गणनीय स्थान (या अनुक्रमिक स्थान नहीं है) नहीं है, तो केवल प्राकृतिक संख्याओं के अलावा अन्य निर्देशित समुच्चयों के लिए अनुमति देना आवश्यक है।

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " |
Proof

() मान लीजिए बिंदु पर सतत है, और माना ऐसा नेट है कि । फिर के प्रत्येक विवृत्त प्रतिवेश के लिए, के तहत इसका पूर्व चित्र का एक प्रतिवेश है ( पर की सातत्य द्वारा)। इस प्रकार का आंतरिक भाग, जिसे द्वारा निरूपित किया जाता है, का विवृत्त प्रतिवेश है, और परिणामस्वरूप अंततः में है। इसलिए अंततः में है और इस प्रकार अंततः में भी है जो कि का उपसमुच्चय है। इस प्रकार और यह दिशा सिद्ध होती है।

() मान लीजिए कि एक ऐसा बिंदु है कि प्रत्येक नेट के लिए ऐसा है कि । अब मान लीजिए कि पर संतत नहीं है। तब का प्रतिवेश होता है, जिसका के अंतर्गत पूर्वचित्र का प्रतिवेश नहीं होता है। क्योंकि आवश्यक रूप से है। अब के विवृत प्रतिवेश का समुच्चय नियंत्रण पूर्वक्रम के साथ निर्देशित समुच्चय (चूंकि प्रत्येक दो ऐसे प्रतिवेशों का प्रतिच्छेदन का विवृत प्रतिवेश है) है।

हम नेट का निर्माण करते हैं जैसे कि के प्रत्येक विवृत प्रतिवेश के लिए जिसका सूचकांक है इस प्रतिवेश में बिंदु है जो में नहीं है कि हमेशा ऐसा बिंदु इस तथ्य से होता है कि का कोई विवृत प्रतिवेश (क्योंकि धारणा से, , का प्रतिवेश नहीं है) में सम्मिलित नहीं है। यह इस प्रकार है कि में नहीं है।

अब, के प्रत्येक विवृत प्रतिवेश के लिए, यह प्रतिवेश उस निर्देशित समुच्चय का सदस्य है जिसका सूचकांक हम को निरूपित करते हैं। प्रत्येक के लिए, निर्देशित समुच्चय का सदस्य जिसकी अनुक्रमणिका है, में निहित है इसलिए । इस प्रकार । और हमारे अनुमान से है। लेकिन का एक विवृत प्रतिवेश है और इस प्रकार अंततः में है और इसलिए में भी है, के विपरीत प्रत्येक के लिए में नहीं है। यह एक विरोधाभास है इसलिए को पर सतत होना चाहिए। यह प्रमाण को पूरा करता है।|}

सघनता

अंतराल सघन है यदि और केवल अगर में प्रत्येक नेट में में सीमा के साथ सबनेट है। इसे बोल्ज़ानो-वीयरस्ट्रास प्रमेय और हेइन-बोरेल प्रमेय के सामान्यीकरण के रूप में देखा जा सकता है।

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " |
Proof

() पहले, मान लीजिए कि सघन है। हमें निम्नलिखित अवलोकन (परिमित प्रतिच्छेदन गुण देखें) की आवश्यकता होगी। माना कोई अरिक्त समुच्चय है और के संवृत्त उपसमुच्चय का संग्रह हो जैसे कि प्रत्येक परिमित के लिए । फिर भी। अन्यथा के लिए विवृत आवरण होगा, जिसमें की सघनता के विपरीत कोई परिमित उपआवरण नहीं होगा।

माना द्वारा निर्देशित में नेट है। प्रत्येक के लिए परिभाषित करें।

संग्रह में गुण है कि प्रत्येक परिमित उपसंग्रह में अरिक्त प्रतिच्छेदन होता है। इस प्रकार, ऊपर की टिप्पणी के द्वारा, हमारे पास वह है

और यह निश्चित रूप से के क्लस्टर बिंदुओं का समुच्चय है। अगले खंड में दिए गए प्रमाण से, यह के अभिसारी सबनेट की सीमाओं के समुच्चय के बराबर है। इस प्रकार में अभिसारी सबनेट है।

() इसके विपरीत, मान लीजिए कि में प्रत्येक नेट में अभिसारी सबनेट है। अंतर्विरोध के लिए, माना बिना किसी परिमित उप आवरण के का विवृत आवरण हो। पर विचार करें। निरीक्षण करें कि समावेशन के तहत निर्देशित समुच्चय है और प्रत्येक के लिए उपस्थित है जैसे कि सभी के लिए । नेट पर विचार करें। इस नेट में अभिसारी सबनेट नहीं हो सकता है, क्योंकि प्रत्येक के लिए उपस्थित है जैसे कि , का प्रतिवेश है हालाँकि, सभी के लिए हमारे पास वह है। यह विरोधाभास है और प्रमाण को पूरा करता है।|}

क्लस्टर और सीमा बिंदु

किसी नेट के क्लस्टर बिंदुओं का समुच्चय उसके अभिसारी सबनेट की सीमाओं के समुच्चय के बराबर होता है।

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " |
Proof

माना एक सांस्थितिक अंतराल में नेट हो (जहां सामान्य रूप से स्वचालित रूप से निर्देशित समुच्चय माना जाता है) और माना भी। यदि के सबनेट की सीमा है तो का क्लस्टर बिंदु है।

इसके विपरीत, मान लें कि का क्लस्टर बिंदु है। माना युग्मों का समुच्चय है। जहाँ , में का विवृत प्रतिवेश है और ऐसा है कि । मानचित्र मानचित्रण से तब अंतिम है। इसके अलावा, को गुणनफल क्रम ( के प्रतिवेश समावेशन द्वारा क्रमित है) इसे एक निर्देशित समुच्चय बनाता है, और द्वारा परिभाषित नेट में अभिसरण करता है।|}

नेट की एक सीमा होती है यदि और केवल यदि उसके सभी सबनेट की सीमाएँ हों। ऐसे में नेट की प्रत्येक सीमा प्रत्येक सबनेट की भी सीमा होती है।

अन्य गुण

सामान्य तौर पर, अंतराल में नेट की एक से अधिक सीमा हो सकती है, लेकिन यदि हॉउसडॉर्फ अंतराल है, तो नेट की सीमा, यदि उपस्थित है, अद्वितीय है। इसके विपरीत, यदि हॉसडॉर्फ नहीं है, तो पर दो अलग-अलग सीमाओं के साथ नेट उपस्थित है। इस प्रकार सीमा की विशिष्टता अंतराल पर हॉसडॉर्फ की स्थिति के बराबर है, और वास्तव में इसे परिभाषा के रूप में लिया जा सकता है। यह परिणाम निर्देशन की स्थिति पर निर्भर करता है; एक सामान्य पूर्वक्रम या आंशिक क्रम द्वारा अनुक्रमित समुच्चय में हौसडॉर्फ अंतराल में भी विशिष्ट सीमा बिंदु हो सकते हैं।

कॉची नेट्स

कॉची नेट एकसमान स्थानों पर परिभाषित नेट के लिए कॉची अनुक्रम की धारणा को सामान्यीकृत करता है।[12]

नेट कॉची नेट है यदि प्रत्येक प्रतिवेश के लिए उपस्थित है जैसे कि सभी के लिए का सदस्य है।[12][13] अधिक प्रायः, कॉची अंतराल में, नेट कॉची होता है यदि नेट द्वारा उत्पन्न फ़िल्टर कॉची फ़िल्टर है।

सांस्थितिक सदिश अंतराल (टीवीएस) को पूर्ण कहा जाता है यदि प्रत्येक कॉची नेट किसी बिंदु पर अभिसरण करता है। आदर्श अंतराल, जो एक विशेष प्रकार का सांस्थितिक सदिश अंतराल है, पूर्ण टीवीएस (समतुल्य रूप से, बनच अंतराल) है यदि और केवल अगर प्रत्येक कॉची अनुक्रम किसी बिंदु (एक गुण जिसे अनुक्रमिक पूर्णता कहा जाता है) पर अभिसरण करता है। हालांकि कॉची नेट्स की आवश्यकता मानक अंतरालों की पूर्णता का वर्णन करने के लिए नहीं है, उन्हें अधिक सामान्य (संभवतः गैर-सामान्य) सांस्थितिक सदिश अंतरालों की पूर्णता का वर्णन करने की आवश्यकता है।

फिल्टर से संबंध

फ़िल्टर टोपोलॉजी में एक और विचार है जो सामान्य सांस्थितिक अंतराल में अभिसरण के लिए सामान्य परिभाषा की अनुमति देता है। दो विचार इस अर्थ में समतुल्य हैं कि वे अभिसरण की समान अवधारणा देते हैं।[14] अधिक विशेष रूप से, प्रत्येक फ़िल्टर आधार के लिए एक संबद्ध जाल का निर्माण किया जा सकता है, और फिल्टर आधार के अभिसरण का तात्पर्य संबंधित नेट के अभिसरण से है - और इसके विपरीत (प्रत्येक नेट के लिए फिल्टर आधार है, और नेट के अभिसरण का तात्पर्य फिल्टर आधार के अभिसरण से है)।[15] उदाहरण के लिए, में कोई भी नेट पश्चभाग के फ़िल्टर आधार को प्रेरित करता है जहां इस फ़िल्टर आधार द्वारा उत्पन्न में फ़िल्टर को नेट की घटना फ़िल्टर कहा जाता है। यह समतुल्यता किसी भी प्रमेय के लिए अनुमति देती है जिसे एक अवधारणा के साथ दूसरे के साथ सिद्ध किया जा सकता है।[15] उदाहरण के लिए, एक सांस्थितिक अंतराल से दूसरे तक किसी फलन की सातत्य को या तो क्षेत्र में नेट के अभिसरण द्वारा विशेषता दी जा सकती है, जो सहक्षेत्र में संबंधित नेट के अभिसरण को दर्शाता है, या फ़िल्टर आधार के साथ एक ही कथन द्वारा।

रॉबर्ट जी. बार्टले का तर्क है कि उनकी समानता के बावजूद, दोनों अवधारणाओं का होना उपयोगी है।[15] उनका तर्क है कि अनुक्रमों के सादृश्य में प्राकृतिक प्रमाण और परिभाषाएँ बनाने के लिए नेट पर्याप्त हैं, विशेष रूप से अनुक्रमिक तत्वों का उपयोग करने वाले, जैसे कि विश्लेषण में सामान्य है, जबकि बीजगणितीय सांस्थितिकी में फ़िल्टर सबसे अधिक उपयोगी हैं। किसी भी स्थिति में, वह दिखाता है कि सामान्य सांस्थितिकी में विभिन्न प्रमेयों को सिद्ध करने के लिए संयोजन में दोनों का उपयोग कैसे किया जा सकता है।

सीमा श्रेष्ठ

वास्तविक संख्याओं के जाल की सीमा श्रेष्ठ और सीमा अवर को उसी तरह से परिभाषित किया जा सकता है जैसे अनुक्रमों के लिए।[16][17][18] कुछ लेखक वास्तविक रेखा की तुलना में अधिक सामान्य संरचनाओं के साथ भी काम करते हैं, जैसे पूर्ण जाली।[19] एक जाल के लिए रखना

वास्तविक संख्याओं के जाल की सीमा श्रेष्ठता में अनुक्रमों के मामले के अनुरूप कई गुण होते हैं। उदाहरण के लिए,
जहां जब भी जालों में से कोई एक अभिसरण होता है तो समानता धारण करती है।

यह भी देखें

उद्धरण

  1. Moore, E. H.; Smith, H. L. (1922). "सीमाओं का एक सामान्य सिद्धांत". American Journal of Mathematics. 44 (2): 102–121. doi:10.2307/2370388. JSTOR 2370388.
  2. (Sundström 2010, p. 16n)
  3. Megginson, p. 143
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Willard 2004, pp. 73–77.
  5. 5.0 5.1 Kelley 1975, pp. 65–72.
  6. Willard 2004, p. 76.
  7. 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Willard 2004, p. 77.
  8. 8.0 8.1 8.2 8.3 Willard 2004, p. 75.
  9. Willard 2004, pp. 71–72.
  10. 10.0 10.1 Schechter 1996, pp. 157–168.
  11. Howes 1995, pp. 83–92.
  12. 12.0 12.1 Willard, Stephen (2012), General Topology, Dover Books on Mathematics, Courier Dover Publications, p. 260, ISBN 9780486131788.
  13. Joshi, K. D. (1983), Introduction to General Topology, New Age International, p. 356, ISBN 9780852264447.
  14. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2015-04-24. Retrieved 2013-01-15.
  15. 15.0 15.1 15.2 R. G. Bartle, Nets and Filters In Topology, American Mathematical Monthly, Vol. 62, No. 8 (1955), pp. 551–557.
  16. Aliprantis-Border, p. 32
  17. Megginson, p. 217, p. 221, Exercises 2.53–2.55
  18. Beer, p. 2
  19. Schechter, Sections 7.43–7.47


संदर्भ