हिल्बर्ट मैट्रिक्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 40: Line 40:
: <math>\frac{1}{\det(H)} = \frac{c_{2n}}{c_n^4} = n! \cdot \prod_{i=1}^{2n-1} \binom{i}{[i/2]}.
: <math>\frac{1}{\det(H)} = \frac{c_{2n}}{c_n^4} = n! \cdot \prod_{i=1}^{2n-1} \binom{i}{[i/2]}.
</math>
</math>
स्टर्लिंग के [[ कारख़ाने का ]] सन्निकटन का उपयोग करके, कोई निम्नलिखित स्पर्शोन्मुख परिणाम स्थापित कर सकता है:
स्टर्लिंग के [[ कारख़ाने का | भाज्य संबंधी]] सन्निकटन का उपयोग करके, कोई निम्नलिखित स्पर्शोन्मुख परिणाम स्थापित कर सकता है:


: <math>\det(H) \sim a_n\, n^{-1/4}(2\pi)^n \,4^{-n^2},</math>
: <math>\det(H) \sim a_n\, n^{-1/4}(2\pi)^n \,4^{-n^2},</math>
जहाँ एक<sub>''n''</sub> स्थिरांक में परिवर्तित हो जाता है <math>e^{1/4}\, 2^{1/12}\, A^{-3} \approx 0.6450</math> जैसा <math>n \to \infty</math>, जहां ए ग्लैशर-किंकेलिन स्थिरांक है।
जहाँ एक<sub>''n''</sub> स्थिरांक में परिवर्तित हो जाता है <math>e^{1/4}\, 2^{1/12}\, A^{-3} \approx 0.6450</math> के रूप में <math>n \to \infty</math>, जहां ए ग्लैशर-किंकेलिन स्थिरांक है।


हिल्बर्ट मैट्रिक्स के व्युत्क्रम मैट्रिक्स को [[द्विपद गुणांक]] का उपयोग करके बंद रूप में व्यक्त किया जा सकता है; इसकी प्रविष्टियाँ हैं
हिल्बर्ट मैट्रिक्स का व्युत्क्रम [[द्विपद गुणांक]] का उपयोग करके बंद रूप में व्यक्त किया जा सकता है; इसकी प्रविष्टियाँ हैं


: <math>(H^{-1})_{ij} = (-1)^{i+j}(i + j - 1) \binom{n + i - 1}{n - j} \binom{n + j - 1}{n - i} \binom{i + j - 2}{i - 1}^2,</math>
: <math>(H^{-1})_{ij} = (-1)^{i+j}(i + j - 1) \binom{n + i - 1}{n - j} \binom{n + j - 1}{n - i} \binom{i + j - 2}{i - 1}^2,</math>
Line 64: Line 64:
  630 & -12600 & 56700 & -88200 & 44100
  630 & -12600 & 56700 & -88200 & 44100
\end{array}\right].</math>
\end{array}\right].</math>
n×n हिल्बर्ट मैट्रिक्स की स्थिति संख्या बढ़ती है <math>O\left(\left(1 + \sqrt{2}\right)^{4n}/\sqrt{n}\right)</math>.
''n'' × ''n'' हिल्बर्ट मैट्रिक्स की स्थिति संख्या बढ़ती है <math>O\left(\left(1 + \sqrt{2}\right)^{4n}/\sqrt{n}\right)</math>.


==अनुप्रयोग==
==अनुप्रयोग==
बहुपद वितरणों पर लागू क्षणों (सांख्यिकी) की विधि के परिणामस्वरूप हेंकेल मैट्रिक्स बनता है, जो अंतराल [0,1] पर संभाव्यता वितरण का अनुमान लगाने के विशेष मामले में हिल्बर्ट मैट्रिक्स में परिणामित होता है। बहुपद वितरण सन्निकटन के भार पैरामीटर प्राप्त करने के लिए इस मैट्रिक्स को उलटा करने की आवश्यकता है।<ref name="PolyD2">J. Munkhammar, L. Mattsson, J. Rydén (2017) [https://doi.org/10.1371/journal.pone.0174573 "Polynomial probability distribution estimation using the method of moments"]. PLoS ONE 12(4): e0174573.</ref>
बहुपद वितरणों पर लागू क्षणों की विधि के परिणामस्वरूप हेंकेल मैट्रिक्स बनता है, जो अंतराल [0, 1] पर संभाव्यता वितरण का अनुमान लगाने के विशेष मामले में हिल्बर्ट मैट्रिक्स में परिणामित होता है। बहुपद वितरण सन्निकटन के भार पैरामीटर प्राप्त करने के लिए इस मैट्रिक्स को उलटा करने की आवश्यकता है।<ref name="PolyD2">J. Munkhammar, L. Mattsson, J. Rydén (2017) [https://doi.org/10.1371/journal.pone.0174573 "Polynomial probability distribution estimation using the method of moments"]. PLoS ONE 12(4): e0174573.</ref>





Revision as of 13:52, 30 July 2023

रैखिक बीजगणित में, हिल्बर्ट (1894),द्वारा प्रस्तुत हिल्बर्ट मैट्रिक्स, एक वर्ग मैट्रिक्स है जिसमें इकाई अंशों की प्रविष्टियाँ होती हैं

उदाहरण के लिए, यह 5 × 5 हिल्बर्ट मैट्रिक्स है:

हिल्बर्ट मैट्रिक्स को इंटीग्रल से व्युत्पन्न माना जा सकता है

अर्थात्, x की घातों के लिए एक ग्रामियन मैट्रिक्स के रूप में उपयोग किया जाता हैं। यह बहुपदों द्वारा मनमाने कार्यों के न्यूनतम वर्ग सन्निकटन में उत्पन्न होता है।

हिल्बर्ट मैट्रिसेस खराब स्थिति वाले मैट्रिसेस के विहित उदाहरण हैं, जिनका संख्यात्मक विश्लेषण में उपयोग करना बेहद कठिन है। उदाहरण के लिए, ऊपर दिए गए मैट्रिक्स की 2-मानदंड स्थिति संख्या लगभग 4.8×105 है।

ऐतिहासिक टिप्पणी

Hilbert (1894) सन्निकटन सिद्धांत में निम्नलिखित प्रश्न का अध्ययन करने के लिए हिल्बर्ट मैट्रिक्स की शुरुआत की: "मान लीजिए कि I = [a, b], एक वास्तविक अंतराल है। क्या तब पूर्णांक गुणांक के साथ एक गैर-शून्य बहुपद P खोजना संभव है, जैसे कि अभिन्न

किसी दिए गए परिबंध ε > 0 से छोटा है, मनमाने ढंग से छोटा लिया गया है?" इस प्रश्न का उत्तर देने के लिए, हिल्बर्ट हिल्बर्ट मैट्रिक्स के निर्धारक के लिए एक सटीक सूत्र प्राप्त करता है और उनके स्पर्शोन्मुखता की जांच करता है। उन्होंने निष्कर्ष निकाला कि उनके प्रश्न का उत्तर सकारात्मक है यदि अंतराल की लंबाई ba 4 से छोटी है।

गुण

हिल्बर्ट मैट्रिक्स सममित मैट्रिक्स और सकारात्मक-निश्चित मैट्रिक्स है। हिल्बर्ट मैट्रिक्स भी पूरी तरह से सकारात्मक है (जिसका अर्थ है कि प्रत्येक सबमैट्रिक्स का निर्धारक सकारात्मक है)।

हिल्बर्ट मैट्रिक्स हैंकेल मैट्रिक्स का एक उदाहरण है। यह कॉची मैट्रिक्स का एक विशिष्ट उदाहरण भी है।

कॉची निर्धारक के एक विशेष मामले के रूप में, निर्धारक को बंद-रूप अभिव्यक्ति में व्यक्त किया जा सकता है। n × n हिल्बर्ट मैट्रिक्स का निर्धारक है

जहाँ

हिल्बर्ट ने पहले ही इस जिज्ञासु तथ्य का उल्लेख किया है कि हिल्बर्ट मैट्रिक्स का निर्धारक एक पूर्णांक का व्युत्क्रम है(ओइआईएस में अनुक्रम OEISA005249देखें), जो पहचान से भी अनुसरण करता है

स्टर्लिंग के भाज्य संबंधी सन्निकटन का उपयोग करके, कोई निम्नलिखित स्पर्शोन्मुख परिणाम स्थापित कर सकता है:

जहाँ एकn स्थिरांक में परिवर्तित हो जाता है के रूप में , जहां ए ग्लैशर-किंकेलिन स्थिरांक है।

हिल्बर्ट मैट्रिक्स का व्युत्क्रम द्विपद गुणांक का उपयोग करके बंद रूप में व्यक्त किया जा सकता है; इसकी प्रविष्टियाँ हैं

जहाँ n मैट्रिक्स का क्रम है।[1] इसका तात्पर्य यह है कि व्युत्क्रम मैट्रिक्स की प्रविष्टियाँ सभी पूर्णांक हैं, और यह कि चिह्न एक चेकरबोर्ड पैटर्न बनाते हैं, जो मुख्य विकर्ण पर सकारात्मक होते हैं। उदाहरण के लिए,

n × n हिल्बर्ट मैट्रिक्स की स्थिति संख्या बढ़ती है .

अनुप्रयोग

बहुपद वितरणों पर लागू क्षणों की विधि के परिणामस्वरूप हेंकेल मैट्रिक्स बनता है, जो अंतराल [0, 1] पर संभाव्यता वितरण का अनुमान लगाने के विशेष मामले में हिल्बर्ट मैट्रिक्स में परिणामित होता है। बहुपद वितरण सन्निकटन के भार पैरामीटर प्राप्त करने के लिए इस मैट्रिक्स को उलटा करने की आवश्यकता है।[2]


संदर्भ

  1. Choi, Man-Duen (1983). "हिल्बर्ट मैट्रिक्स के साथ युक्तियाँ या व्यवहार". The American Mathematical Monthly. 90 (5): 301–312. doi:10.2307/2975779. JSTOR 2975779.
  2. J. Munkhammar, L. Mattsson, J. Rydén (2017) "Polynomial probability distribution estimation using the method of moments". PLoS ONE 12(4): e0174573.


अग्रिम पठन