निश्चित समुच्चय: Difference between revisions

From Vigyanwiki
(Created page with "गणितीय तर्क में, एक निश्चित सेट एक संरचना (गणितीय तर्क) के संरचना...")
 
No edit summary
Line 1: Line 1:
[[गणितीय तर्क]] में, एक निश्चित सेट एक [[संरचना (गणितीय तर्क)]] के संरचना (गणितीय तर्क)#डोमेन पर एक ''एन''-आर्य [[संबंध (गणित)]] होता है, जिसके तत्व उस संरचना की प्रथम-क्रम भाषा में कुछ [[सूत्र (गणितीय तर्क)]] को संतुष्ट करते हैं। एक [[सेट (गणित)]] को पैरामीटर के साथ या उसके बिना परिभाषित किया जा सकता है, जो डोमेन के तत्व हैं जिन्हें संबंध को परिभाषित करने वाले सूत्र में संदर्भित किया जा सकता है।
[[गणितीय तर्क]] में, निश्चित सेट [[संरचना (गणितीय तर्क)]] के संरचना (गणितीय तर्क)#डोमेन पर ''एन''-आर्य [[संबंध (गणित)]] होता है, जिसके तत्व उस संरचना की प्रथम-क्रम भाषा में कुछ [[सूत्र (गणितीय तर्क)]] को संतुष्ट करते हैं। [[सेट (गणित)]] को पैरामीटर के साथ या उसके बिना परिभाषित किया जा सकता है, जो डोमेन के तत्व हैं जिन्हें संबंध को परिभाषित करने वाले सूत्र में संदर्भित किया जा सकता है।


== परिभाषा ==
== परिभाषा ==


होने देना <math>\mathcal{L}</math> प्रथम-क्रम की भाषा बनें, <math>\mathcal{M}</math> एक <math>\mathcal{L}</math>-डोमेन के साथ संरचना <math>M</math>, <math>X</math> का एक निश्चित उपसमुच्चय <math>M</math>, और <math>m</math> एक [[प्राकृतिक संख्या]]. तब:
होने देना <math>\mathcal{L}</math> प्रथम-क्रम की भाषा बनें, <math>\mathcal{M}</math> <math>\mathcal{L}</math>-डोमेन के साथ संरचना <math>M</math>, <math>X</math> का निश्चित उपसमुच्चय <math>M</math>, और <math>m</math> [[प्राकृतिक संख्या]]. तब:
* एक सेट <math>A\subseteq M^m</math> में निश्चित है <math>\mathcal{M}</math> से पैरामीटर के साथ <math>X</math>यदि और केवल यदि कोई सूत्र मौजूद है <math>\varphi[x_1,\ldots,x_m,y_1,\ldots,y_n]</math> और तत्व <math>b_1,\ldots,b_n\in X</math> ऐसा कि सभी के लिए <math>a_1,\ldots,a_m\in M</math>,
* एक सेट <math>A\subseteq M^m</math> में निश्चित है <math>\mathcal{M}</math> से पैरामीटर के साथ <math>X</math>यदि और केवल यदि कोई सूत्र मौजूद है <math>\varphi[x_1,\ldots,x_m,y_1,\ldots,y_n]</math> और तत्व <math>b_1,\ldots,b_n\in X</math> ऐसा कि सभी के लिए <math>a_1,\ldots,a_m\in M</math>,
:<math>(a_1,\ldots,a_m)\in A</math> अगर और केवल अगर <math>\mathcal{M}\models\varphi[a_1,\ldots,a_m,b_1,\ldots,b_n].</math>
:<math>(a_1,\ldots,a_m)\in A</math> अगर और केवल अगर <math>\mathcal{M}\models\varphi[a_1,\ldots,a_m,b_1,\ldots,b_n].</math>
Line 16: Line 16:
=== केवल क्रम संबंध के साथ प्राकृतिक संख्याएँ ===
=== केवल क्रम संबंध के साथ प्राकृतिक संख्याएँ ===


होने देना <math>\mathcal{N}=(\mathbb{N},<)</math> सामान्य क्रम के साथ प्राकृतिक संख्याओं से युक्त संरचना बनें{{clarification needed|date=January 2023|reason=This seems to be conflating syntax and semantics, at least to the extent that the first-order theory being modelled isn't explictly stated. Presumably the author had in mind Peano arithmetic, and is considering the standard model in ZFC as the structure, but again it would be a lot more useful for novices if important subtleties like that aren't swept under the rug, because they most likely lack the ability yet to correctly infer the syntax and semantics from context.}}. तब प्रत्येक प्राकृत संख्या निश्चित होती है <math>\mathcal{N}</math> पैरामीटर के बिना. जो नंबर <math>0</math> सूत्र द्वारा परिभाषित किया गया है <math>\varphi(x)</math> यह बताते हुए कि x से कम कोई तत्व मौजूद नहीं है:
होने देना <math>\mathcal{N}=(\mathbb{N},<)</math> सामान्य क्रम के साथ प्राकृतिक संख्याओं से युक्त संरचना बनें. तब प्रत्येक प्राकृत संख्या निश्चित होती है <math>\mathcal{N}</math> पैरामीटर के बिना. जो नंबर <math>0</math> सूत्र द्वारा परिभाषित किया गया है <math>\varphi(x)</math> यह बताते हुए कि x से कम कोई तत्व मौजूद नहीं है:
:<math>\varphi=\neg\exists y(y<x),</math>
:<math>\varphi=\neg\exists y(y<x),</math>
और एक प्राकृतिक संख्या <math>n>0</math> सूत्र द्वारा परिभाषित किया गया है <math>\varphi(x)</math> यह कहते हुए कि वहाँ वास्तव में अस्तित्व है <math>n</math> x से कम तत्व:
और प्राकृतिक संख्या <math>n>0</math> सूत्र द्वारा परिभाषित किया गया है <math>\varphi(x)</math> यह कहते हुए कि वहाँ वास्तव में अस्तित्व है <math>n</math> x से कम तत्व:
:<math>\varphi = \exists x_0\cdots\exists x_{n-1}(x_0<x_1 \land\cdots\land x_{n-1}<x \land \forall y(y<x \rightarrow (y \equiv x_0 \lor\cdots\lor y \equiv x_{n-1})))</math>
:<math>\varphi = \exists x_0\cdots\exists x_{n-1}(x_0<x_1 \land\cdots\land x_{n-1}<x \land \forall y(y<x \rightarrow (y \equiv x_0 \lor\cdots\lor y \equiv x_{n-1})))</math>
इसके विपरीत, कोई संरचना में मापदंडों के बिना किसी विशिष्ट [[पूर्णांक]] को परिभाषित नहीं कर सकता है <math>\mathcal{Z}=(\mathbb{Z},<)</math> सामान्य क्रम के साथ पूर्णांकों से युक्त (नीचे [[ स्वचालितता ]] पर अनुभाग देखें)।
इसके विपरीत, कोई संरचना में मापदंडों के बिना किसी विशिष्ट [[पूर्णांक]] को परिभाषित नहीं कर सकता है <math>\mathcal{Z}=(\mathbb{Z},<)</math> सामान्य क्रम के साथ पूर्णांकों से युक्त (नीचे [[ स्वचालितता |स्वचालितता]] पर अनुभाग देखें)।


=== प्राकृतिक संख्याएँ उनकी अंकगणितीय संक्रियाओं के साथ ===
=== प्राकृतिक संख्याएँ उनकी अंकगणितीय संक्रियाओं के साथ ===
Line 28: Line 28:
=== वास्तविक संख्याओं का क्षेत्र ===
=== वास्तविक संख्याओं का क्षेत्र ===


होने देना <math>\mathcal{R}=(\mathbb{R},0,1,+,\cdot)</math> [[वास्तविक संख्या]]ओं के क्षेत्र (गणित) से युक्त संरचना बनें{{clarification needed|date=January 2023|reason=Again, to specify a structure you need to specify not just the domain of discourse, but the underlying first-order theory being interpreted. Based on the context it seems like the theory of real-closed fields, with the domain of discourse being the standard model of the real numbers in ZFC. Fine, but again this should not be implicit based on context for an introductory article.}}. यद्यपि सामान्य क्रम संबंध सीधे संरचना में शामिल नहीं है, एक सूत्र है जो गैर-नकारात्मक वास्तविकताओं के सेट को परिभाषित करता है, क्योंकि ये एकमात्र वास्तविकताएं हैं जिनमें वर्गमूल होते हैं:
होने देना <math>\mathcal{R}=(\mathbb{R},0,1,+,\cdot)</math> [[वास्तविक संख्या]]ओं के क्षेत्र (गणित) से युक्त संरचना बनें. यद्यपि सामान्य क्रम संबंध सीधे संरचना में शामिल नहीं है, सूत्र है जो गैर-नकारात्मक वास्तविकताओं के सेट को परिभाषित करता है, क्योंकि ये एकमात्र वास्तविकताएं हैं जिनमें वर्गमूल होते हैं:


:<math>\varphi = \exists y(y \cdot y \equiv x).</math>
:<math>\varphi = \exists y(y \cdot y \equiv x).</math>
इस प्रकार कोई भी <math>a\in\R</math> गैर-नकारात्मक है यदि और केवल यदि <math>\mathcal{R}\models\varphi[a]</math>. एक सूत्र के साथ संयोजन में जो वास्तविक संख्या के योगात्मक व्युत्क्रम को परिभाषित करता है <math>\mathcal{R}</math>, कोई भी उपयोग कर सकता है <math>\varphi</math> सामान्य ऑर्डर को परिभाषित करने के लिए <math>\mathcal{R}</math>: के लिए <math>a,b\in\R</math>, तय करना <math>a\le b</math> अगर और केवल अगर <math>b-a</math> गैर-नकारात्मक है. बढ़ी हुई संरचना <math>\mathcal{R}^{\le}=(\mathbb{R},0,1,+,\cdot,\le)</math> मूल संरचना की परिभाषाओं के अनुसार इसे विस्तार कहा जाता है। इसमें मूल संरचना के समान ही अभिव्यंजक शक्ति है, इस अर्थ में कि एक सेट को मापदंडों के एक सेट से विस्तारित संरचना पर परिभाषित किया जा सकता है यदि और केवल यदि यह मापदंडों के उसी सेट से मूल संरचना पर परिभाषित किया जा सकता है।
इस प्रकार कोई भी <math>a\in\R</math> गैर-नकारात्मक है यदि और केवल यदि <math>\mathcal{R}\models\varphi[a]</math>. सूत्र के साथ संयोजन में जो वास्तविक संख्या के योगात्मक व्युत्क्रम को परिभाषित करता है <math>\mathcal{R}</math>, कोई भी उपयोग कर सकता है <math>\varphi</math> सामान्य ऑर्डर को परिभाषित करने के लिए <math>\mathcal{R}</math>: के लिए <math>a,b\in\R</math>, तय करना <math>a\le b</math> अगर और केवल अगर <math>b-a</math> गैर-नकारात्मक है. बढ़ी हुई संरचना <math>\mathcal{R}^{\le}=(\mathbb{R},0,1,+,\cdot,\le)</math> मूल संरचना की परिभाषाओं के अनुसार इसे विस्तार कहा जाता है। इसमें मूल संरचना के समान ही अभिव्यंजक शक्ति है, इस अर्थ में कि सेट को मापदंडों के सेट से विस्तारित संरचना पर परिभाषित किया जा सकता है यदि और केवल यदि यह मापदंडों के उसी सेट से मूल संरचना पर परिभाषित किया जा सकता है।


का [[सिद्धांत (गणितीय तर्क)]]। <math>\mathcal{R}^{\le}</math> क्वांटिफ़ायर उन्मूलन है। इस प्रकार निश्चित समुच्चय बहुपद समानताओं और असमानताओं के समाधान के समुच्चय के क्षेत्र हैं; इन्हें अर्ध-बीजीय समुच्चय कहा जाता है। वास्तविक रेखा की इस संपत्ति का सामान्यीकरण [[ओ-न्यूनतमता]] के अध्ययन की ओर ले जाता है।
का [[सिद्धांत (गणितीय तर्क)]]। <math>\mathcal{R}^{\le}</math> क्वांटिफ़ायर उन्मूलन है। इस प्रकार निश्चित समुच्चय बहुपद समानताओं और असमानताओं के समाधान के समुच्चय के क्षेत्र हैं; इन्हें अर्ध-बीजीय समुच्चय कहा जाता है। वास्तविक रेखा की इस संपत्ति का सामान्यीकरण [[ओ-न्यूनतमता]] के अध्ययन की ओर ले जाता है।
Line 37: Line 37:
== ऑटोमोर्फिज्म के अंतर्गत अपरिवर्तन ==
== ऑटोमोर्फिज्म के अंतर्गत अपरिवर्तन ==


निश्चित सेटों के बारे में एक महत्वपूर्ण परिणाम यह है कि उन्हें ऑटोमोर्फिज्म के तहत संरक्षित किया जाता है।
निश्चित सेटों के बारे में महत्वपूर्ण परिणाम यह है कि उन्हें ऑटोमोर्फिज्म के तहत संरक्षित किया जाता है।
:होने देना <math>\mathcal{M}</math> सेम <math>\mathcal{L}</math>-डोमेन के साथ संरचना <math>M</math>, <math>X\subseteq M</math>, और <math>A\subseteq M^m</math> में निश्चित <math>\mathcal{M}</math> से पैरामीटर के साथ <math>X</math>. होने देना <math>\pi:M\to M</math> का एक ऑटोमोर्फिज्म हो <math>\mathcal{M}</math> वही पहचान है <math>X</math>. फिर सबके लिए <math>a_1,\ldots,a_m\in M</math>,
:होने देना <math>\mathcal{M}</math> सेम <math>\mathcal{L}</math>-डोमेन के साथ संरचना <math>M</math>, <math>X\subseteq M</math>, और <math>A\subseteq M^m</math> में निश्चित <math>\mathcal{M}</math> से पैरामीटर के साथ <math>X</math>. होने देना <math>\pi:M\to M</math> का ऑटोमोर्फिज्म हो <math>\mathcal{M}</math> वही पहचान है <math>X</math>. फिर सबके लिए <math>a_1,\ldots,a_m\in M</math>,


::<math>(a_1,\ldots,a_m)\in A</math> अगर और केवल अगर <math>(\pi(a_1),\ldots,\pi(a_m))\in A.</math>
::<math>(a_1,\ldots,a_m)\in A</math> अगर और केवल अगर <math>(\pi(a_1),\ldots,\pi(a_m))\in A.</math>
इस परिणाम का उपयोग कभी-कभी किसी दी गई संरचना के निश्चित उपसमुच्चय को वर्गीकृत करने के लिए किया जा सकता है। उदाहरण के लिए, के मामले में <math>\mathcal{Z}=(\mathbb{Z},<)</math> ऊपर, का कोई भी अनुवाद <math>\mathcal{Z}</math> पैरामीटर के खाली सेट को संरक्षित करने वाला एक ऑटोमोर्फिज्म है, और इस प्रकार पैरामीटर के बिना इस संरचना में किसी विशेष पूर्णांक को परिभाषित करना असंभव है <math>\mathcal{Z}</math>. वास्तव में, चूँकि किन्हीं दो पूर्णांकों को एक अनुवाद और उसके व्युत्क्रम द्वारा एक दूसरे तक ले जाया जाता है, पूर्णांकों का एकमात्र सेट निश्चित होता है <math>\mathcal{Z}</math> पैरामीटर के बिना खाली सेट हैं और <math>\mathbb{Z}</math> अपने आप। इसके विपरीत, तत्वों के जोड़े के अनंत रूप से कई निश्चित सेट हैं (या वास्तव में किसी निश्चित n > 1 के लिए n-टुपल्स) <math>\mathcal{Z}</math>: (मामले में n = 2) सेट के बूलियन संयोजन <math>\{(a, b) \mid a - b = m\}</math> के लिए <math>m \in \mathbb Z</math>. विशेष रूप से, कोई भी ऑटोमोर्फिज्म (अनुवाद) दो तत्वों के बीच की दूरी को संरक्षित करता है।
इस परिणाम का उपयोग कभी-कभी किसी दी गई संरचना के निश्चित उपसमुच्चय को वर्गीकृत करने के लिए किया जा सकता है। उदाहरण के लिए, के मामले में <math>\mathcal{Z}=(\mathbb{Z},<)</math> ऊपर, का कोई भी अनुवाद <math>\mathcal{Z}</math> पैरामीटर के खाली सेट को संरक्षित करने वाला ऑटोमोर्फिज्म है, और इस प्रकार पैरामीटर के बिना इस संरचना में किसी विशेष पूर्णांक को परिभाषित करना असंभव है <math>\mathcal{Z}</math>. वास्तव में, चूँकि किन्हीं दो पूर्णांकों को अनुवाद और उसके व्युत्क्रम द्वारा दूसरे तक ले जाया जाता है, पूर्णांकों का एकमात्र सेट निश्चित होता है <math>\mathcal{Z}</math> पैरामीटर के बिना खाली सेट हैं और <math>\mathbb{Z}</math> अपने आप। इसके विपरीत, तत्वों के जोड़े के अनंत रूप से कई निश्चित सेट हैं (या वास्तव में किसी निश्चित n > 1 के लिए n-टुपल्स) <math>\mathcal{Z}</math>: (मामले में n = 2) सेट के बूलियन संयोजन <math>\{(a, b) \mid a - b = m\}</math> के लिए <math>m \in \mathbb Z</math>. विशेष रूप से, कोई भी ऑटोमोर्फिज्म (अनुवाद) दो तत्वों के बीच की दूरी को संरक्षित करता है।


== अतिरिक्त परिणाम ==
== अतिरिक्त परिणाम ==
Line 53: Line 53:
*[[Theodore Slaman|Slaman, Theodore A.]] and [[W. Hugh Woodin|Woodin, W. Hugh]]. ''Mathematical Logic: The Berkeley Undergraduate Course''. Spring 2006.
*[[Theodore Slaman|Slaman, Theodore A.]] and [[W. Hugh Woodin|Woodin, W. Hugh]]. ''Mathematical Logic: The Berkeley Undergraduate Course''. Spring 2006.


{{Authority control}}
[[Category: मॉडल सिद्धांत]] [[Category: तर्क]] [[Category: गणितीय तर्क]]  
[[Category: मॉडल सिद्धांत]] [[Category: तर्क]] [[Category: गणितीय तर्क]]  



Revision as of 19:58, 3 August 2023

गणितीय तर्क में, निश्चित सेट संरचना (गणितीय तर्क) के संरचना (गणितीय तर्क)#डोमेन पर एन-आर्य संबंध (गणित) होता है, जिसके तत्व उस संरचना की प्रथम-क्रम भाषा में कुछ सूत्र (गणितीय तर्क) को संतुष्ट करते हैं। सेट (गणित) को पैरामीटर के साथ या उसके बिना परिभाषित किया जा सकता है, जो डोमेन के तत्व हैं जिन्हें संबंध को परिभाषित करने वाले सूत्र में संदर्भित किया जा सकता है।

परिभाषा

होने देना प्रथम-क्रम की भाषा बनें, -डोमेन के साथ संरचना , का निश्चित उपसमुच्चय , और प्राकृतिक संख्या. तब:

  • एक सेट में निश्चित है से पैरामीटर के साथ यदि और केवल यदि कोई सूत्र मौजूद है और तत्व ऐसा कि सभी के लिए ,
अगर और केवल अगर
यहां ब्रैकेट नोटेशन सूत्र में मुक्त चर के अर्थपूर्ण मूल्यांकन को इंगित करता है।
  • एक सेट में निश्चित है बिना पैरामीटर के यदि यह निश्चित है खाली सेट से पैरामीटर के साथ (अर्थात, परिभाषित सूत्र में कोई पैरामीटर नहीं है)।
  • एक फ़ंक्शन निश्चित है (मापदंडों के साथ) यदि इसका ग्राफ़ निश्चित है (उन मापदंडों के साथ)। .
  • तत्व में निश्चित है (मापदंडों के साथ) यदि सिंगलटन (गणित) में निश्चित है (उन मापदंडों के साथ)।

उदाहरण

केवल क्रम संबंध के साथ प्राकृतिक संख्याएँ

होने देना सामान्य क्रम के साथ प्राकृतिक संख्याओं से युक्त संरचना बनें. तब प्रत्येक प्राकृत संख्या निश्चित होती है पैरामीटर के बिना. जो नंबर सूत्र द्वारा परिभाषित किया गया है यह बताते हुए कि x से कम कोई तत्व मौजूद नहीं है:

और प्राकृतिक संख्या सूत्र द्वारा परिभाषित किया गया है यह कहते हुए कि वहाँ वास्तव में अस्तित्व है x से कम तत्व:

इसके विपरीत, कोई संरचना में मापदंडों के बिना किसी विशिष्ट पूर्णांक को परिभाषित नहीं कर सकता है सामान्य क्रम के साथ पूर्णांकों से युक्त (नीचे स्वचालितता पर अनुभाग देखें)।

प्राकृतिक संख्याएँ उनकी अंकगणितीय संक्रियाओं के साथ

होने देना प्राकृतिक संख्याओं और उनके सामान्य अंकगणितीय संचालन और क्रम संबंध से युक्त प्रथम-क्रम संरचना बनें। इस संरचना में परिभाषित सेट को अंकगणितीय सेट के रूप में जाना जाता है, और अंकगणितीय पदानुक्रम में वर्गीकृत किया जाता है। यदि संरचना को प्रथम-क्रम तर्क के बजाय दूसरे-क्रम तर्क में माना जाता है, तो परिणामी संरचना में प्राकृतिक संख्याओं के निश्चित सेट को विश्लेषणात्मक पदानुक्रम में वर्गीकृत किया जाता है। ये पदानुक्रम इस संरचना में निश्चितता संगणना सिद्धांत सिद्धांत के बीच कई संबंधों को प्रकट करते हैं, और वर्णनात्मक सेट सिद्धांत में भी रुचि रखते हैं।

वास्तविक संख्याओं का क्षेत्र

होने देना वास्तविक संख्याओं के क्षेत्र (गणित) से युक्त संरचना बनें. यद्यपि सामान्य क्रम संबंध सीधे संरचना में शामिल नहीं है, सूत्र है जो गैर-नकारात्मक वास्तविकताओं के सेट को परिभाषित करता है, क्योंकि ये एकमात्र वास्तविकताएं हैं जिनमें वर्गमूल होते हैं:

इस प्रकार कोई भी गैर-नकारात्मक है यदि और केवल यदि . सूत्र के साथ संयोजन में जो वास्तविक संख्या के योगात्मक व्युत्क्रम को परिभाषित करता है , कोई भी उपयोग कर सकता है सामान्य ऑर्डर को परिभाषित करने के लिए : के लिए , तय करना अगर और केवल अगर गैर-नकारात्मक है. बढ़ी हुई संरचना मूल संरचना की परिभाषाओं के अनुसार इसे विस्तार कहा जाता है। इसमें मूल संरचना के समान ही अभिव्यंजक शक्ति है, इस अर्थ में कि सेट को मापदंडों के सेट से विस्तारित संरचना पर परिभाषित किया जा सकता है यदि और केवल यदि यह मापदंडों के उसी सेट से मूल संरचना पर परिभाषित किया जा सकता है।

का सिद्धांत (गणितीय तर्क) क्वांटिफ़ायर उन्मूलन है। इस प्रकार निश्चित समुच्चय बहुपद समानताओं और असमानताओं के समाधान के समुच्चय के क्षेत्र हैं; इन्हें अर्ध-बीजीय समुच्चय कहा जाता है। वास्तविक रेखा की इस संपत्ति का सामान्यीकरण ओ-न्यूनतमता के अध्ययन की ओर ले जाता है।

ऑटोमोर्फिज्म के अंतर्गत अपरिवर्तन

निश्चित सेटों के बारे में महत्वपूर्ण परिणाम यह है कि उन्हें ऑटोमोर्फिज्म के तहत संरक्षित किया जाता है।

होने देना सेम -डोमेन के साथ संरचना , , और में निश्चित से पैरामीटर के साथ . होने देना का ऑटोमोर्फिज्म हो वही पहचान है . फिर सबके लिए ,
अगर और केवल अगर

इस परिणाम का उपयोग कभी-कभी किसी दी गई संरचना के निश्चित उपसमुच्चय को वर्गीकृत करने के लिए किया जा सकता है। उदाहरण के लिए, के मामले में ऊपर, का कोई भी अनुवाद पैरामीटर के खाली सेट को संरक्षित करने वाला ऑटोमोर्फिज्म है, और इस प्रकार पैरामीटर के बिना इस संरचना में किसी विशेष पूर्णांक को परिभाषित करना असंभव है . वास्तव में, चूँकि किन्हीं दो पूर्णांकों को अनुवाद और उसके व्युत्क्रम द्वारा दूसरे तक ले जाया जाता है, पूर्णांकों का एकमात्र सेट निश्चित होता है पैरामीटर के बिना खाली सेट हैं और अपने आप। इसके विपरीत, तत्वों के जोड़े के अनंत रूप से कई निश्चित सेट हैं (या वास्तव में किसी निश्चित n > 1 के लिए n-टुपल्स) : (मामले में n = 2) सेट के बूलियन संयोजन के लिए . विशेष रूप से, कोई भी ऑटोमोर्फिज्म (अनुवाद) दो तत्वों के बीच की दूरी को संरक्षित करता है।

अतिरिक्त परिणाम

टार्स्की-वॉट परीक्षण का उपयोग किसी दिए गए ढांचे की प्रारंभिक उपसंरचनाओं को चिह्नित करने के लिए किया जाता है।

संदर्भ

  • Hinman, Peter. Fundamentals of Mathematical Logic, A K Peters, 2005.
  • Marker, David. Model Theory: An Introduction, Springer, 2002.
  • Rudin, Walter. Principles of Mathematical Analysis, 3rd. ed. McGraw-Hill, 1976.
  • Slaman, Theodore A. and Woodin, W. Hugh. Mathematical Logic: The Berkeley Undergraduate Course. Spring 2006.