जैकोबी रोटेशन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 25: Line 25:
यह [[जैकोबी आइजेनवैल्यू एल्गोरिथम]] में मुख्य ऑपरेशन है, जो [[संख्यात्मक रूप से स्थिर]] है और [[समानांतर प्रोसेसर]] पर कार्यान्वयन के लिए उपयुक्त है। .
यह [[जैकोबी आइजेनवैल्यू एल्गोरिथम]] में मुख्य ऑपरेशन है, जो [[संख्यात्मक रूप से स्थिर]] है और [[समानांतर प्रोसेसर]] पर कार्यान्वयन के लिए उपयुक्त है। .


केवल A की पंक्तियाँ k और ℓ और कॉलम k और ℓ प्रभावित होंगे, और वह A{{prime}} सममित रहेगा. इसके अतिरिक्त , Q<sub>''k''ℓ</sub> के लिए स्पष्ट आव्युह इसकी गणना शायद ही कभी की जाती है; इसके अतिरिक्त , सहायक मानों की गणना की जाती है और A को कुशल और संख्यात्मक रूप से स्थिर विधियों से अद्यतन किया जाता है। चूँकि , संदर्भ के लिए, हम आव्युह को इस प्रकार लिख सकते हैं
केवल A की पंक्तियाँ k और ℓ और कॉलम k और ℓ से  प्रभावित होंगे, और वह A{{prime}} सममित रहेगा. इसके अतिरिक्त , Q<sub>''k''ℓ</sub> के लिए स्पष्ट आव्युह इसकी गणना संभवतः ही कभी की जाती है; इसके अतिरिक्त, सहायक मानों की गणना की जाती है और A को कुशल और संख्यात्मक रूप से स्थिर विधियों से अद्यतन किया जाता है। चूँकि, संदर्भ के लिए, हम आव्युह को इस प्रकार लिख सकते हैं


: <math>
: <math>

Revision as of 15:36, 3 August 2023

संख्यात्मक रैखिक बीजगणित में, जैकोबी रोटेशन n-आयामी आंतरिक उत्पाद स्थान के 2-आयामी रैखिक(गणित) उप-स्थान का रोटेशन Qk है, A तब समान आव्युह के रूप में प्रयुक्त किया जाता है: जब n × n वास्तविक संख्या सममित आव्युह, की ऑफ-मेन विकर्ण प्रविष्टियों की सममित जोड़ी को शून्य करने के लिए चुना जाता है,

यह जैकोबी आइजेनवैल्यू एल्गोरिथम में मुख्य ऑपरेशन है, जो संख्यात्मक रूप से स्थिर है और समानांतर प्रोसेसर पर कार्यान्वयन के लिए उपयुक्त है। .

केवल A की पंक्तियाँ k और ℓ और कॉलम k और ℓ से प्रभावित होंगे, और वह A सममित रहेगा. इसके अतिरिक्त , Qk के लिए स्पष्ट आव्युह इसकी गणना संभवतः ही कभी की जाती है; इसके अतिरिक्त, सहायक मानों की गणना की जाती है और A को कुशल और संख्यात्मक रूप से स्थिर विधियों से अद्यतन किया जाता है। चूँकि, संदर्भ के लिए, हम आव्युह को इस प्रकार लिख सकते हैं

अर्थात् Qk की चार प्रविष्टियों को छोड़कर इसकी पहचान आव्युह है, तथा दोनों विकर्ण पर qkk और qℓℓ, दोनों c के समान हैं) और दो सममित रूप से विकर्ण से दूर रखे गए (qk और qk, क्रमशः s और −s के समान ) होते हैं। यहां कुछ कोण θ के लिए c=cosθ और s=sinθ लेकिन रोटेशन प्रयुक्त करने के लिए कोण की ही आवश्यकता नहीं होती है। क्रोनकर डेल्टा नोटेशन का उपयोग करके, आव्युह प्रविष्टियाँ लिखी जा सकती हैं

मान लीजिए h, k या ℓ के अतिरिक्त सूचकांक है (जो स्वयं भिन्न होना चाहिए)। फिर समानता अद्यतन, बीजगणितीय रूप से, उत्पन्न करता है


संख्यात्मक रूप से स्थिर गणना

अद्यतन के लिए आवश्यक मात्राएँ निर्धारित करने के लिए, हमें शून्य के लिए ऑफ-विकर्ण समीकरण को हल करना होगा (गोलुब & वैन लोन 1996, §8.4). इसका अर्थ यह है कि

इस मात्रा के आधे पर β निर्धारित करें,

यदि akℓ शून्य है तो हम अद्यतन किए बिना रुक सकते हैं, इस प्रकार हम कभी भी शून्य से विभाजित नहीं होते हैं। मान लीजिए t tan θ है। फिर कुछ त्रिकोणमितीय सर्वसमिकाओं के साथ हम समीकरण को कम करते हैं

स्थिरता के लिए हम समाधान चुनते हैं

इससे हम c और s प्राप्त कर सकते हैं

चूँकि अब हम पहले दिए गए बीजगणितीय अद्यतन समीकरणों का उपयोग कर सकते हैं, उन्हें फिर से लिखना बेहतर हो सकता है। मान लीजिये

जिससे ρ = tan(θ/2). फिर संशोधित अद्यतन समीकरण हैं

जैसा कि पहले कहा गया है, हमें कभी भी रोटेशन कोण θ की स्पष्ट रूप से गणना करने की आवश्यकता नहीं है। वास्तव में, हम Qk द्वारा निर्धारित सममित अद्यतन को पुन: उत्पन्न कर सकते हैं केवल तीन मान k, ℓ, और t को निरंतर रखते हुए, शून्य रोटेशन के लिए t को शून्य पर निर्धारित किया गया है।

यह भी देखें

संदर्भ

  • Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3rd ed.), Baltimore: Johns Hopkins University Press, ISBN 978-0-8018-5414-9