परिमाणीकरण (छवि प्रसंस्करण): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
प्रतिरूप प्रसंस्करण में सम्मिलित '''परिमाणीकरण''', एक ऐसी [[हानिपूर्ण संपीड़न]] तकनीक है जो मानों की श्रृंखला को क्वांटम (असतत) मान में संपीड़ित करके प्राप्त की जाती है। जब किसी दिए गए प्रवाह में अलग-अलग प्रतीकों की संख्या कम हो जाती है, तो प्रवाह अधिक संपीड़ित हो जाती है। इस प्रकार से उदाहरण के लिए, किसी डिजिटल प्रतिरूप को दर्शाने के लिए आवश्यक वर्णों की संख्या कम करने से इसके फ़ाइल आकार को कम करना संभव हो जाता है। विशिष्ट अनुप्रयोगों में [[JPEG|जेपीइजी]] में [[असतत कोसाइन परिवर्तन|असतत कोज्या परिवर्तन]] डेटा परिमाणीकरण और [[JPEG 2000|जेपीइजी 2000]] में [[असतत तरंगिका परिवर्तन]] डेटा परिमाणीकरण सम्मिलित हैं। | |||
== | == वर्ण परिमाणीकरण == | ||
{{main| | {{main|वर्ण परिमाणीकरण}} | ||
वर्ण परिमाणीकरण किसी प्रतिरूप में उपयोग किए गए वर्णों की संख्या को कम कर देता है; यह उन उपकरणों पर प्रतिरूपों को प्रदर्शित करने के लिए महत्वपूर्ण है जो सीमित संख्या में वर्णों का समर्थन करते हैं और कुछ प्रकार की प्रतिरूपों को कुशलतापूर्वक संपीड़ित करने के लिए महत्वपूर्ण हैं। अतः अधिकांश बिट प्रतिचित्र संपादकों और कई ऑपरेटिंग सिस्टमों में वर्ण परिमाणीकरण के लिए अंतर्निहित समर्थन होता है। लोकप्रिय आधुनिक वर्ण परिमाणीकरण एल्गोरिदम में निकटतम वर्ण एल्गोरिदम (निश्चित पैलेट के लिए), [[मध्य कट]] और [[ अष्टक |ओक्ट्रीज]] पर आधारित एल्गोरिदम सम्मिलित हैं। | |||
बड़ी संख्या में | इस प्रकार से बड़ी संख्या में वर्णों की धारणा बनाने और [[रंग बैंडिंग|वर्ण बैंडिंग]] कलाकृतियों को समाप्त करने के लिए वर्ण परिमाणीकरण को [[ तड़पना |स्पंदन]] के साथ जोड़ना सामान्य बात है। | ||
== | == प्रतिरूप संपीड़न के लिए आवृत्ति परिमाणीकरण == | ||
मानव | अतः मानव नेत्र अपेक्षाकृत बड़े क्षेत्र में [[चमक|प्रकाश]] में छोटे अंतर देखने में अत्यधिक ठीक है, परन्तु उच्च आवृत्ति (तीव्रता से बदलती) प्रकाश भिन्नता की यथार्थ दृढ़ता को पहचानने में इतना स्पष्ट नहीं है। इस प्रकार से यह तथ्य उच्च आवृत्ति घटकों को अनदेखा करके आवश्यक सूचना की मात्रा को कम करने की अनुमति देता है। अतः यह मात्र आवृत्ति डोमेन में प्रत्येक घटक को उस घटक के लिए स्थिरांक से विभाजित करके और फिर निकटतम पूर्णांक तक पूर्णांकित करके किया जाता है। यह पूर्ण प्रक्रिया में मुख्य हानिपूर्ण संचालन है। इस प्रकार से इसके परिणामस्वरूप, सामान्यतः ऐसा होता है कि उच्च आवृत्ति वाले कई घटकों को शून्य तक पूर्णांकित कर दिया जाता है, और शेष कई छोटे धनात्मक या ऋणात्मक संख्या बन जाते हैं। | ||
चूंकि मानव दृष्टि भी [[क्रोमिनेंस]] की तुलना में [[luminance]] के प्रति अधिक संवेदनशील है, गैर-आरजीबी | चूंकि मानव दृष्टि भी [[क्रोमिनेंस]] की तुलना में [[luminance|ल्युमिनेंस]] के प्रति अधिक संवेदनशील है, गैर-आरजीबी वर्ण स्थान में कार्य करके और अधिक संपीड़न प्राप्त किया जा सकता है जो दोनों को अलग करता है (उदाहरण के लिए, [[वाईसीबीसीआर]]), और चैनलों को अलग-अलग मात्राबद्ध करता है।<ref name="wiseman">John Wiseman, ''An Introduction to MPEG Video Compression'', https://web.archive.org/web/20111115004238/http://www.john-wiseman.com/technical/MPEG_tutorial.htm</ref> | ||
=== परिमाणीकरण | === परिमाणीकरण आव्यूह === | ||
एक विशिष्ट वीडियो कोडेक चित्र को अलग-अलग | अतः एक विशिष्ट वीडियो कोडेक चित्र को अलग-अलग कक्षों (एमपीईजी की स्थिति में 8×8 पिक्सेल) में तोड़कर कार्य करता है।<ref name="wiseman"/> इन कक्षों को क्षैतिज और लंबवत दोनों रूप से आवृत्ति घटकों की गणना करने के लिए असतत कोज्या परिवर्तन (डीसीटी) के अधीन किया जा सकता है।<ref name="wiseman"/> इस प्रकार से परिणामी कक्ष (मूल कक्ष के समान आकार) को फिर परिमाणीकरण स्तर कोड द्वारा पूर्व-गुणा किया जाता है और परिमाणीकरण आव्यूह द्वारा अवयव-वार विभाजित किया जाता है, और प्रत्येक परिणामी अवयव को गोल किया जाता है। परिमाणीकरण आव्यूह को अधिक से अधिक घटकों को 0 में बदलने के अतिरिक्त कम बोधगम्य घटकों (सामान्यतः उच्च आवृत्तियों पर कम आवृत्तियों) की तुलना में अधिक बोधगम्य आवृत्ति घटकों को अधिक विभेदन प्रदान करने के लिए डिज़ाइन किया गया है, जिसे सबसे बड़ी दक्षता के साथ एन्कोड किया जा सकता है। अतः कई वीडियो एनकोडर (जैसे [[DivX|डिवएक्स]], [[Xvid|एक्सविड]], और [[3ivx|3आईवीएक्स]]) और संपीड़न मानक (जैसे [[MPEG-2|एमपीईजी-2]] और एच.264/एवीसी) कस्टम आव्यूह का उपयोग करने की अनुमति देते हैं। पूर्ण क्वान्टमक आव्यूह की तुलना में बहुत कम बैंडविस्तार लेते हुए, क्वान्टमक माप कोड को बदलकर कमी की सीमा भिन्न हो सकती है।<ref name="wiseman"/> | ||
यह | |||
इस प्रकार से यह डीसीटी गुणांक आव्यूह का उदाहरण है: | |||
:<math> | :<math> | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 29: | Line 30: | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
एक सामान्य परिमाणीकरण | एक सामान्य परिमाणीकरण आव्यूह है: | ||
:<math> | :<math> | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 42: | Line 43: | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
इस परिमाणीकरण | इस परिमाणीकरण आव्यूह के साथ डीसीटी गुणांक आव्यूह को अवयव-वार विभाजित करने और पूर्णांक में पूर्णांकित करने पर परिणाम मिलता है: | ||
:<math> | :<math> | ||
Line 56: | Line 57: | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
उदाहरण के लिए, -415 (डीसी गुणांक) का उपयोग करके और निकटतम पूर्णांक | उदाहरण के लिए, -415 (डीसी गुणांक) का उपयोग करके और निकटतम पूर्णांक | ||
:<math> | :<math> | ||
Line 69: | Line 70: | ||
\right) | \right) | ||
=-26 | =-26 | ||
</math> | </math> तक पूर्णांकित करना | ||
सामान्यतः इस प्रक्रिया के परिणामस्वरूप मुख्य रूप से ऊपरी बाएँ (कम आवृत्ति) कोण में मान वाले आव्यूह उत्पन्न होंगे। इस प्रकार से गैर-शून्य प्रविष्टियों को समूहीकृत करने [[लम्बाई एन्कोडिंग चलाएँ|लम्बाई एन्कोडिंग]] चलाने के लिए असम्मरूप क्रम का उपयोग करके, परिमाणित आव्यूह को गैर-परिमाणित संस्करण की तुलना में अधिक कुशलता से संग्रहीत किया जा सकता है।<ref name="wiseman" /> | |||
==यह भी देखें== | ==यह भी देखें== | ||
* [[छवि विभाजन]] | * [[छवि विभाजन|प्रतिरूप विभाजन]] | ||
* [[छवि-आधारित मेशिंग]] | * [[छवि-आधारित मेशिंग|प्रतिरूप-आधारित मेशिंग]] | ||
* [[रेंज विभाजन]] | * [[रेंज विभाजन|श्रेणी विभाजन]] | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 16:53, 30 July 2023
प्रतिरूप प्रसंस्करण में सम्मिलित परिमाणीकरण, एक ऐसी हानिपूर्ण संपीड़न तकनीक है जो मानों की श्रृंखला को क्वांटम (असतत) मान में संपीड़ित करके प्राप्त की जाती है। जब किसी दिए गए प्रवाह में अलग-अलग प्रतीकों की संख्या कम हो जाती है, तो प्रवाह अधिक संपीड़ित हो जाती है। इस प्रकार से उदाहरण के लिए, किसी डिजिटल प्रतिरूप को दर्शाने के लिए आवश्यक वर्णों की संख्या कम करने से इसके फ़ाइल आकार को कम करना संभव हो जाता है। विशिष्ट अनुप्रयोगों में जेपीइजी में असतत कोज्या परिवर्तन डेटा परिमाणीकरण और जेपीइजी 2000 में असतत तरंगिका परिवर्तन डेटा परिमाणीकरण सम्मिलित हैं।
वर्ण परिमाणीकरण
वर्ण परिमाणीकरण किसी प्रतिरूप में उपयोग किए गए वर्णों की संख्या को कम कर देता है; यह उन उपकरणों पर प्रतिरूपों को प्रदर्शित करने के लिए महत्वपूर्ण है जो सीमित संख्या में वर्णों का समर्थन करते हैं और कुछ प्रकार की प्रतिरूपों को कुशलतापूर्वक संपीड़ित करने के लिए महत्वपूर्ण हैं। अतः अधिकांश बिट प्रतिचित्र संपादकों और कई ऑपरेटिंग सिस्टमों में वर्ण परिमाणीकरण के लिए अंतर्निहित समर्थन होता है। लोकप्रिय आधुनिक वर्ण परिमाणीकरण एल्गोरिदम में निकटतम वर्ण एल्गोरिदम (निश्चित पैलेट के लिए), मध्य कट और ओक्ट्रीज पर आधारित एल्गोरिदम सम्मिलित हैं।
इस प्रकार से बड़ी संख्या में वर्णों की धारणा बनाने और वर्ण बैंडिंग कलाकृतियों को समाप्त करने के लिए वर्ण परिमाणीकरण को स्पंदन के साथ जोड़ना सामान्य बात है।
प्रतिरूप संपीड़न के लिए आवृत्ति परिमाणीकरण
अतः मानव नेत्र अपेक्षाकृत बड़े क्षेत्र में प्रकाश में छोटे अंतर देखने में अत्यधिक ठीक है, परन्तु उच्च आवृत्ति (तीव्रता से बदलती) प्रकाश भिन्नता की यथार्थ दृढ़ता को पहचानने में इतना स्पष्ट नहीं है। इस प्रकार से यह तथ्य उच्च आवृत्ति घटकों को अनदेखा करके आवश्यक सूचना की मात्रा को कम करने की अनुमति देता है। अतः यह मात्र आवृत्ति डोमेन में प्रत्येक घटक को उस घटक के लिए स्थिरांक से विभाजित करके और फिर निकटतम पूर्णांक तक पूर्णांकित करके किया जाता है। यह पूर्ण प्रक्रिया में मुख्य हानिपूर्ण संचालन है। इस प्रकार से इसके परिणामस्वरूप, सामान्यतः ऐसा होता है कि उच्च आवृत्ति वाले कई घटकों को शून्य तक पूर्णांकित कर दिया जाता है, और शेष कई छोटे धनात्मक या ऋणात्मक संख्या बन जाते हैं।
चूंकि मानव दृष्टि भी क्रोमिनेंस की तुलना में ल्युमिनेंस के प्रति अधिक संवेदनशील है, गैर-आरजीबी वर्ण स्थान में कार्य करके और अधिक संपीड़न प्राप्त किया जा सकता है जो दोनों को अलग करता है (उदाहरण के लिए, वाईसीबीसीआर), और चैनलों को अलग-अलग मात्राबद्ध करता है।[1]
परिमाणीकरण आव्यूह
अतः एक विशिष्ट वीडियो कोडेक चित्र को अलग-अलग कक्षों (एमपीईजी की स्थिति में 8×8 पिक्सेल) में तोड़कर कार्य करता है।[1] इन कक्षों को क्षैतिज और लंबवत दोनों रूप से आवृत्ति घटकों की गणना करने के लिए असतत कोज्या परिवर्तन (डीसीटी) के अधीन किया जा सकता है।[1] इस प्रकार से परिणामी कक्ष (मूल कक्ष के समान आकार) को फिर परिमाणीकरण स्तर कोड द्वारा पूर्व-गुणा किया जाता है और परिमाणीकरण आव्यूह द्वारा अवयव-वार विभाजित किया जाता है, और प्रत्येक परिणामी अवयव को गोल किया जाता है। परिमाणीकरण आव्यूह को अधिक से अधिक घटकों को 0 में बदलने के अतिरिक्त कम बोधगम्य घटकों (सामान्यतः उच्च आवृत्तियों पर कम आवृत्तियों) की तुलना में अधिक बोधगम्य आवृत्ति घटकों को अधिक विभेदन प्रदान करने के लिए डिज़ाइन किया गया है, जिसे सबसे बड़ी दक्षता के साथ एन्कोड किया जा सकता है। अतः कई वीडियो एनकोडर (जैसे डिवएक्स, एक्सविड, और 3आईवीएक्स) और संपीड़न मानक (जैसे एमपीईजी-2 और एच.264/एवीसी) कस्टम आव्यूह का उपयोग करने की अनुमति देते हैं। पूर्ण क्वान्टमक आव्यूह की तुलना में बहुत कम बैंडविस्तार लेते हुए, क्वान्टमक माप कोड को बदलकर कमी की सीमा भिन्न हो सकती है।[1]
इस प्रकार से यह डीसीटी गुणांक आव्यूह का उदाहरण है:
एक सामान्य परिमाणीकरण आव्यूह है:
इस परिमाणीकरण आव्यूह के साथ डीसीटी गुणांक आव्यूह को अवयव-वार विभाजित करने और पूर्णांक में पूर्णांकित करने पर परिणाम मिलता है:
उदाहरण के लिए, -415 (डीसी गुणांक) का उपयोग करके और निकटतम पूर्णांक
- तक पूर्णांकित करना
सामान्यतः इस प्रक्रिया के परिणामस्वरूप मुख्य रूप से ऊपरी बाएँ (कम आवृत्ति) कोण में मान वाले आव्यूह उत्पन्न होंगे। इस प्रकार से गैर-शून्य प्रविष्टियों को समूहीकृत करने लम्बाई एन्कोडिंग चलाने के लिए असम्मरूप क्रम का उपयोग करके, परिमाणित आव्यूह को गैर-परिमाणित संस्करण की तुलना में अधिक कुशलता से संग्रहीत किया जा सकता है।[1]