निरंतरता की सीमा: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (4 revisions imported from alpha:निरंतरता_की_सीमा) |
(No difference)
|
Revision as of 11:32, 10 August 2023
गणितीय भौतिकी और गणित में, एक लैटिस (जाली) मॉडल की सातत्य सीमा या मापन सीमा में उसके व्यवहार को संदर्भित करती है क्योंकि लैटिस का अंतराल शून्य हो जाता है। ब्राउनियन गति जैसी वास्तविक विश्व की प्रक्रियाओं का अनुमान लगाने के लिए लैटिस मॉडल का उपयोग करना प्रायः उपयोगी होता है। वास्तव में, डोंस्कर के प्रमेय के अनुसार, असतत यादृच्छिक गति, मापन सीमा में, वास्तविक ब्राउनियन गति के समीप पहुंच जाएगा।
शब्दावली
सातत्य सीमा शब्द का उपयोग अधिकतम भौतिक विज्ञान में होता है, प्रायः क्वांटम भौतिकी के स्वरूपों के मॉडल के संदर्भ में, जबकि शब्द मापन सीमा गणितीय उपयोग में अधिक सामान्य होता है।
क्वांटम क्षेत्र सिद्धांत में अनुप्रयोग
लैटिस मॉडल जो सीमा में एक सांतत्यक (सिद्धांत) क्वांटम क्षेत्र सिद्धांत का अनुमान लगाता है क्योंकि लैटिस अंतराल शून्य हो जाता है, और मॉडल के दूसरे क्रम प्रावस्था संक्रमण को खोजने के अनुरूप हो सकता है। यह मॉडल की मापन सीमा होती है।
यह भी देखें
संदर्भ
- H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena
- H. Kleinert, Gauge Fields in Condensed Matter, Vol. I, " SUPERFLOW AND VORTEX LINES", pp. 1–742, Vol. II, "STRESSES AND DEFECTS", pp. 743–1456, World Scientific (Singapore, 1989); Paperback ISBN 9971-5-0210-0 (also available online: Vol. I and Vol. II)
- H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4-Theories, World Scientific (Singapore, 2001); Paperback ISBN 981-02-4658-7 (also available online)