शंकु: Difference between revisions
(modify,text editing) |
(modified,text changes) |
||
Line 32: | Line 32: | ||
आयतन <math>V</math> किसी भी शंकु ठोस का आधार के क्षेत्रफल के गुणनफल का एक तिहाई होता है <math>A_B</math> और ऊंचाई <math>h</math><ref name=":0 >{{Cite book|url=https://books.google.com/books?id=EN_KAgAAQBAJ|title=Elementary Geometry for College Students|last=Alexander|first=Daniel C.|last2=Koeberlein|first2=Geralyn M.|date=2014-01-01|publisher=Cengage Learning|isbn=9781285965901|language=en}}</ref> | आयतन <math>V</math> किसी भी शंकु ठोस का आधार के क्षेत्रफल के गुणनफल का एक तिहाई होता है <math>A_B</math> और ऊंचाई <math>h</math><ref name=":0 >{{Cite book|url=https://books.google.com/books?id=EN_KAgAAQBAJ|title=Elementary Geometry for College Students|last=Alexander|first=Daniel C.|last2=Koeberlein|first2=Geralyn M.|date=2014-01-01|publisher=Cengage Learning|isbn=9781285965901|language=en}}</ref> | ||
:<math>V = \frac{1}{3}A_B h.</math> | :<math>V = \frac{1}{3}A_B h.</math> | ||
आधुनिक गणित में, इस सूत्र को कैलकुलस का उपयोग करके आसानी से परिकलित किया जा सकता है - यह स्केलिंग तक, इंटीग्रल <math display= block >\int x^2 dx = \tfrac{1}{3} x^3</math> है। कैलकुलस का उपयोग किए बिना, सूत्र को एक पिरामिड से शंकु की तुलना करके और कैवेलियरी के सिद्धांत को लागू करके सिद्ध किया जा सकता है - विशेष रूप से, शंकु की तुलना एक (लंबवत स्केल किए गए) | आधुनिक गणित में, इस सूत्र को कैलकुलस का उपयोग करके आसानी से परिकलित किया जा सकता है - यह स्केलिंग तक, इंटीग्रल <math display= block >\int x^2 dx = \tfrac{1}{3} x^3</math> है। कैलकुलस का उपयोग किए बिना, सूत्र को एक पिरामिड से शंकु की तुलना करके और कैवेलियरी के सिद्धांत को लागू करके सिद्ध किया जा सकता है - विशेष रूप से, शंकु की तुलना एक (लंबवत स्केल किए गए) लम्ब वर्गाकार पिरामिड से की जाती है, जो एक घन का एक तिहाई बनाता है। इस सूत्र को ऐसे अनंतिम तर्कों का उपयोग किए बिना सिद्ध नहीं किया जा सकता है - उसके लिए पॉलीहेड्रल क्षेत्र के 2-आयामी फ़ार्मुलों के विपरीत, यद्यपि सर्कल के क्षेत्र के समान- और इसलिए कैलकुस के आगमन से पहले , प्राचीन यूनानियों द्वारा क्षय विधि (एक्सहस्शन मेथड) का उपयोग करते हुए कम कठोर सबूत स्वीकार किए गए। यह तत्त्वतः हिल्बर्ट की तीसरी समस्या की विषय वस्तु है - अधिक सटीक रूप से, सभी पॉलीहेड्रल पिरामिड सीज़र्स कांग्रएन्ट नहीं हैं (इसे परिमित टुकड़ों में काटा जा सकता है और दूसरे में पुनर्व्यवस्थित किया जा सकता है), और इस प्रकार एक अपघटन तर्क का उपयोग करके मात्रा की गणना विशुद्ध रूप से नहीं की जा सकती है -।<ref>{{Cite book|url=https://books.google.com/books?id=C5fSBwAAQBAJ|title=Geometry: Euclid and Beyond|last=Hartshorne|first=Robin|date=2013-11-11|publisher=Springer Science & Business Media|isbn=9780387226767|at=Chapter 27|language=en}} </ref> | ||
=== द्रव्यमान का केंद्र === | === द्रव्यमान का केंद्र === | ||
एकसमान घनत्व वाले | एकसमान घनत्व वाले ठोस शंकु का द्रव्यमान केंद्र, आधार केंद्र से शीर्ष तक के रास्ते का एक-चौथाई भाग होता है, जो दोनों को मिलाने वाली सीधी रेखा पर होता है। | ||
=== दायां गोलाकार शंकु === | === दायां गोलाकार शंकु === | ||
Line 45: | Line 45: | ||
==== तिरछी ऊंचाई ==== | ==== तिरछी ऊंचाई ==== | ||
एक लम्ब वृत्तीय शंकु की तिर्यक ऊँचाई उसके आधार के वृत्त के किसी बिंदु से शंकु की सतह के अनुदिश रेखाखंड से होते हुए शीर्ष तक की दूरी है। यह | एक लम्ब वृत्तीय शंकु की तिर्यक ऊँचाई उसके आधार के वृत्त के किसी बिंदु से शंकु की सतह के अनुदिश रेखाखंड से होते हुए शीर्ष तक की दूरी है। यह <math>\sqrt{r^2+h^2}</math> द्वारा दिया गया है, जहां पे <math>r</math> आधार की त्रिज्या है और <math>h</math> ऊंचाई है। यह पाइथागोरस प्रमेय द्वारा सिद्ध किया जा सकता है। | ||
==== भूतल क्षेत्र ==== | ==== भूतल क्षेत्र ==== | ||
एक लम्ब वृत्तीय शंकु का पार्श्व पृष्ठीय क्षेत्रफल है <math>LSA = \pi r l</math> | एक लम्ब वृत्तीय शंकु का पार्श्व पृष्ठीय क्षेत्रफल है <math>LSA = \pi r l</math> जहां पे <math>r</math> शंकु के तल पर वृत्त की त्रिज्या है और <math>l</math> शंकु की तिर्यक ऊँचाई है।<ref name=":0 /> एक शंकु के निचले वृत्त का पृष्ठीय क्षेत्रफल किसी भी वृत्त के क्षेत्रफल <math>\pi r^2</math> के समान होता है इस प्रकार, एक लम्ब वृत्तीय शंकु का कुल पृष्ठीय क्षेत्रफल निम्नलिखित में से प्रत्येक के रूप में व्यक्त किया जा सकता है: | ||
*त्रिज्या और ऊंचाई | *त्रिज्या और ऊंचाई | ||
:<math>\pi r^2+\pi r \sqrt{r^2+h^2}</math> | :<math>\pi r^2+\pi r \sqrt{r^2+h^2}</math> | ||
:(आधार का क्षेत्रफल और पार्श्व सतह का क्षेत्रफल; | :(आधार का क्षेत्रफल और पार्श्व सतह का क्षेत्रफल; यहाँ पे <math>\sqrt{r^2+h^2}</math> तिरछी ऊंचाई है) | ||
:<math>\pi r \left(r + \sqrt{r^2+h^2}\right)</math> | :<math>\pi r \left(r + \sqrt{r^2+h^2}\right)</math> | ||
: | :यहाँ पे <math>r</math> त्रिज्या है और <math>h</math> ऊंचाई है। | ||
*त्रिज्या और तिरछी ऊंचाई | *त्रिज्या और तिरछी ऊंचाई | ||
:<math>\pi r^2+\pi r l</math> | :<math>\pi r^2+\pi r l</math> | ||
:<math>\pi r(r+l)</math> | :<math>\pi r(r+l)</math> | ||
: | :यहाँ पे <math>r</math> त्रिज्या है और <math>l</math> तिरछी ऊंचाई है। | ||
*परिधि और तिरछी ऊंचाई | *परिधि और तिरछी ऊंचाई | ||
:<math>\frac {c^2} {4 \pi} + \frac {cl} 2</math> | :<math>\frac {c^2} {4 \pi} + \frac {cl} 2</math> | ||
:<math>\left(\frac c 2\right)\left(\frac c {2\pi} + l\right)</math> | :<math>\left(\frac c 2\right)\left(\frac c {2\pi} + l\right)</math> | ||
: | :यहाँ पे <math>c</math> परिधि है और <math>l</math> तिरछी ऊंचाई है। | ||
*शीर्ष कोण और ऊंचाई | *शीर्ष कोण और ऊंचाई | ||
:<math>\pi h^2 \tan \frac{\Theta}{2} \left(\tan \frac{\Theta}{2} + \sec \frac{\Theta}{2}\right)</math> | :<math>\pi h^2 \tan \frac{\Theta}{2} \left(\tan \frac{\Theta}{2} + \sec \frac{\Theta}{2}\right)</math> | ||
: | :यहाँ पे <math> \Theta </math> शीर्ष कोण है और <math>h</math> ऊंचाई है। | ||
==== सर्कुलर सेक्टर ==== | ==== सर्कुलर सेक्टर ==== | ||
शंकु के | शंकु के घाटिका की सतह को खोलकर प्राप्त वृत्ताकार में त्रिज्यखंड होता है...... | ||
*त्रिज्या आर | *त्रिज्या आर | ||
Line 85: | Line 85: | ||
एक शंकु की सतह के रूप में पैरामीटर किया जा सकता है | एक शंकु की सतह के रूप में पैरामीटर किया जा सकता है | ||
:<math>f(\theta,h) = (h \cos\theta, h \sin\theta, h ),</math> | :<math>f(\theta,h) = (h \cos\theta, h \sin\theta, h ),</math> | ||
:यहाँ पे <math>\theta \in [0,2\pi)</math> शंकु के चारों ओर का कोण है, और <math>h \in \mathbb{R}</math> शंकु के साथ ऊंचाई है। | |||
ऊंचाई के साथ एक सही ठोस गोलाकार शंकु <math>h</math> और एपर्चर <math>2\theta</math>, जिसकी धुरी है <math>z</math> निर्देशांक अक्ष और जिसका शीर्ष मूल है, को पैरामीट्रिक रूप से वर्णित किया गया है | ऊंचाई के साथ एक सही ठोस गोलाकार शंकु <math>h</math> और एपर्चर <math>2\theta</math>, जिसकी धुरी है <math>z</math> निर्देशांक अक्ष और जिसका शीर्ष मूल है, को पैरामीट्रिक रूप से वर्णित किया गया है | ||
:<math>F(s,t,u) = \left(u \tan s \cos t, u \tan s \sin t, u \right)</math> | :<math>F(s,t,u) = \left(u \tan s \cos t, u \tan s \sin t, u \right)</math> | ||
यहाँ पे <math>s,t,u</math> सीमा से अधिक <math>[0,\theta)</math>, <math>[0,2\pi)</math>, तथा <math>[0,h]</math>, क्रमश। | |||
निहित रूप में एक ही ठोस को असमानताओं द्वारा परिभाषित किया जाता है | निहित रूप में एक ही ठोस को असमानताओं द्वारा परिभाषित किया जाता है | ||
:<math>\{ F(x,y,z) \leq 0, z\geq 0, z\leq h\},</math> | :<math>\{ F(x,y,z) \leq 0, z\geq 0, z\leq h\},</math> | ||
यहाँ पे | |||
:<math>F(x,y,z) = (x^2 + y^2)(\cos\theta)^2 - z^2 (\sin \theta)^2.\,</math> | :<math>F(x,y,z) = (x^2 + y^2)(\cos\theta)^2 - z^2 (\sin \theta)^2.\,</math> | ||
:ज्यादातर, शीर्ष के मूल पर एक लम्ब गोलाकार शंकु, वेक्टर के समानांतर अक्ष <math>d</math>,और एपर्चर <math>2\theta</math>, निहित सदिश समीकरण <math>F(u) = 0</math> द्वारा दिया गया है,यहाँ पे | |||
:<math>F(u) = (u \cdot d)^2 - (d \cdot d) (u \cdot u) (\cos \theta)^2</math> या <math>F(u) = u \cdot d - |d| |u| \cos \theta</math> | :<math>F(u) = (u \cdot d)^2 - (d \cdot d) (u \cdot u) (\cos \theta)^2</math> या <math>F(u) = u \cdot d - |d| |u| \cos \theta</math> | ||
यहाँ पे <math>u=(x,y,z)</math>, तथा <math>u \cdot d</math> डॉट उत्पाद को दर्शाता है। | |||
=== अण्डाकार शंकु === | === अण्डाकार शंकु === | ||
[[File:Elliptical Cone Quadric.Png|एक अण्डाकार शंकु चतुर्भुज सतह]] | [[File:Elliptical Cone Quadric.Png|एक अण्डाकार शंकु चतुर्भुज सतह]]एक अण्डाकार शंकु चतुर्भुज सतह <ref>{{harvtxt|Protter|Morrey|1970|p=583}}</ref> | ||
:<math> \frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2 .</math> | :<math> \frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2 .</math> | ||
यह | यह एक जुडी हुई छवि है, जहां लम्ब गोलाकार इकाई शंकु की एक परिबद्ध छवि <math>x^2+y^2=z^2\ .</math>है। वास्तव में शंकु खंड की अनुकुल छवि (एफ्फिन इमेज ) एक ही प्रकार के (दीर्घवृत्त, परवलय,...) नमुनो मे मिलता है। | ||
*अण्डाकार शंकु का कोई भी समतल भाग एक शंकु खंड होता है। | *अण्डाकार शंकु का कोई भी समतल भाग एक शंकु खंड होता है। | ||
स्पष्ट है कि किसी भी लम्ब वृत्तीय शंकु में वृत्त होते हैं। यह भी सच है, लेकिन सामान्य मामले में कम स्पष्ट है (परिपत्र अनुभाग देखें)। | स्पष्ट है कि किसी भी लम्ब वृत्तीय शंकु में वृत्त होते हैं। यह भी सच है, लेकिन सामान्य मामले में कम स्पष्ट है (परिपत्र अनुभाग देखें)। |
Revision as of 13:12, 5 July 2022
File:Cono 3D.stl शंकु, एक त्रि-आयामी(त्रिविमीय) संरचना है,जो शीर्ष बिन्दु और एक आधार (आवश्यक नहीं कि आधार वृत्ताकार हो) को मिलाने वाली रेखाओं द्वारा निर्मित होती है। यह शीर्ष तक या शीर्ष बिंदु तक पतला होता है|
शंकु रेखा खंडों, अर्ध-रेखाओं का समूह, या एक सामान्य बिंदु से शीर्ष को जोड़ने वाली रेखाओं के समूह द्वारा एक आधार पर सभी बिंदुओं से बनता है और एक तल में होता है जिसमें शीर्ष नहीं होता है। लेखक के आधार पर, आधार को एक वृत्त, समतल में कोई एक-आयामी द्विघात रूप, किसी भी बंद एक आयामी आंकड़ा, या उपरोक्त में से कोई भी संलग्न बिंदुओं तक सीमित किया जा सकता है। यदि संलग्न बिंदुओं को आधार में शामिल किया जाता है, तो शंकु एक ठोस वस्तु की तरह है; अन्यथा यह त्रि-आयामी स्थल में एक द्वि-आयामी वस्तु है। ठोस वस्तु के मामले में, इन रेखाओं या आंशिक रेखाओं से बनी सीमा को पार्श्व सतह कहा जाता है; यदि पार्श्व सतह अपार है, तो यह एक शंक्वाकार सतह होती है।
शंकु रेखाखंडों के मामले में, आधार से आगे नहीं बढ़ता है, जबकि अर्ध-रेखाओं के मामले में, यह अपार रूप से दूर तक फैला होता है। शंकु रेखाओं के मामले में शीर्ष से दोनों दिशाओं में अपरिमित रूप से फैला हुआ होता है, इस स्थिति में इसे कभी-कभी दोहरा शंकु कहा जाता है। शीर्ष के एक तरफ एक दोहरे शंकु के आधे हिस्से को नैप कहा जाता है।
एक शंकु की धुरी शीर्ष से गुजरने वाली सीधी रेखा (यदि कोई हो) होती है, जिसके आस पास आधार (पुरा शंकु) सम वृत्ताकार होता है।
प्राथमिक ज्यामिति के सामान्य उपयोग में, शंकु को 'सम वृत्ताकार' माना जाता है, यहाँ वृत्ताकार का अर्थ है कि आधार एक वृत्त है और यथार्थ रूप से (दाएँ का अर्थ है कि ) अक्ष आधार के केंद्र से समकोण पर उसके तल से होकर गुजरता है।[1]यदि शंकु सम वृत्ताकार है तो पार्श्व सतह वाले समतल का प्रतिच्छेदन एक शंकु खंड है। सामान्य तौर पर, हालांकि, आधार किसी भी आकार का हो सकता है[2]और शीर्ष कहीं भी स्थित हो सकता है (हालांकि आमतौर पर यह माना जाता है कि आधार घिरा हुआ है और इसलिए इसका परिमित क्षेत्र है, और शीर्ष आधार के तल के बाहर स्थित है)। वासत्विक शंकु के विपरीत तिरछे शंकु होते हैं, जिसमें अक्ष आधार के केंद्र से गैर-लंबवत रूप से गुजरता है।[3]एक बहुभुज आधार वाले शंकु को पिरामिड कहा जाता है।
संदर्भ के आधार पर, शंकु का अर्थ विशेष रूप से उत्तल शंकु या प्रक्षेपी शंकु भी हो सकता है।
शंकु को उच्च आयामों के लिए भी सामान्यीकृत किया जा सकता है।
आगे की शब्दावली
एक शंकु के आधार की परिधि को डायरेक्ट्रिक्स कहा जाता है, डायरेक्ट्रिक्स और शिखर के बीच का प्रत्येक रेखा खंड पार्श्व सतह की एक जेनरेट्रिक्स या जनरेटिंग लाइन है। (शंकु खंड के डायरेक्ट्रिक्स और डायरेक्ट्रिक्स शब्द के इस अर्थ के बीच संबंध के लिए, डंडेलिन क्षेत्र देखें।)
एक वृत्ताकार शंकु की आधार त्रिज्या उसके आधार की त्रिज्या है, अक्सर इसे केवल शंकु की त्रिज्या कहा जाता है। एक लम्ब वृत्तीय शंकु का छिद्र दो जेनरेट्रिक्स रेखाओं के बीच का अधिकतम कोण होता है, यदि जेनरेटर अक्ष से कोण बनाता है, तो एपर्चर 2θ है। शंकु जिसमें एक समतल द्वारा काटे गए शीर्ष सहित एक क्षेत्र होता है, एक छोटा शंकु कहलाता है; यदि कटाव तल शंकु के आधार के समानांतर है, तो इसे छिन्नक कहा जाता है।[1] एक अण्डाकार शंकु एक अण्डाकार आधार वाला शंकु होता है।[1] एक सामान्यीकृत शंकु एक शीर्ष और एक सीमा पर प्रत्येक बिंदु से गुजरने वाली रेखाओं के समूह द्वारा बनाई गई सतह है (दृश्य पतवार भी देखें)।
माप और समीकरण
वॉल्यूम
आयतन किसी भी शंकु ठोस का आधार के क्षेत्रफल के गुणनफल का एक तिहाई होता है और ऊंचाई [4]
आधुनिक गणित में, इस सूत्र को कैलकुलस का उपयोग करके आसानी से परिकलित किया जा सकता है - यह स्केलिंग तक, इंटीग्रल
द्रव्यमान का केंद्र
एकसमान घनत्व वाले ठोस शंकु का द्रव्यमान केंद्र, आधार केंद्र से शीर्ष तक के रास्ते का एक-चौथाई भाग होता है, जो दोनों को मिलाने वाली सीधी रेखा पर होता है।
दायां गोलाकार शंकु
वॉल्यूम
त्रिज्या r और ऊँचाई h वाले एक वृत्ताकार शंकु के लिए, आधार क्षेत्रफल का एक वृत्त है और इसलिए आयतन का सूत्र बन जाता है[6]
तिरछी ऊंचाई
एक लम्ब वृत्तीय शंकु की तिर्यक ऊँचाई उसके आधार के वृत्त के किसी बिंदु से शंकु की सतह के अनुदिश रेखाखंड से होते हुए शीर्ष तक की दूरी है। यह द्वारा दिया गया है, जहां पे आधार की त्रिज्या है और ऊंचाई है। यह पाइथागोरस प्रमेय द्वारा सिद्ध किया जा सकता है।
भूतल क्षेत्र
एक लम्ब वृत्तीय शंकु का पार्श्व पृष्ठीय क्षेत्रफल है जहां पे शंकु के तल पर वृत्त की त्रिज्या है और शंकु की तिर्यक ऊँचाई है।[4] एक शंकु के निचले वृत्त का पृष्ठीय क्षेत्रफल किसी भी वृत्त के क्षेत्रफल के समान होता है इस प्रकार, एक लम्ब वृत्तीय शंकु का कुल पृष्ठीय क्षेत्रफल निम्नलिखित में से प्रत्येक के रूप में व्यक्त किया जा सकता है:
- त्रिज्या और ऊंचाई
- (आधार का क्षेत्रफल और पार्श्व सतह का क्षेत्रफल; यहाँ पे तिरछी ऊंचाई है)
- यहाँ पे त्रिज्या है और ऊंचाई है।
- त्रिज्या और तिरछी ऊंचाई
- यहाँ पे त्रिज्या है और तिरछी ऊंचाई है।
- परिधि और तिरछी ऊंचाई
- यहाँ पे परिधि है और तिरछी ऊंचाई है।
- शीर्ष कोण और ऊंचाई
- यहाँ पे शीर्ष कोण है और ऊंचाई है।
सर्कुलर सेक्टर
शंकु के घाटिका की सतह को खोलकर प्राप्त वृत्ताकार में त्रिज्यखंड होता है......
- त्रिज्या आर
- चाप की लंबाई L
- केंद्रीय कोण φ रेडियन में
समीकरण रूप
एक शंकु की सतह के रूप में पैरामीटर किया जा सकता है
- यहाँ पे शंकु के चारों ओर का कोण है, और शंकु के साथ ऊंचाई है।
ऊंचाई के साथ एक सही ठोस गोलाकार शंकु और एपर्चर , जिसकी धुरी है निर्देशांक अक्ष और जिसका शीर्ष मूल है, को पैरामीट्रिक रूप से वर्णित किया गया है
यहाँ पे सीमा से अधिक , , तथा , क्रमश।
निहित रूप में एक ही ठोस को असमानताओं द्वारा परिभाषित किया जाता है
यहाँ पे
- ज्यादातर, शीर्ष के मूल पर एक लम्ब गोलाकार शंकु, वेक्टर के समानांतर अक्ष ,और एपर्चर , निहित सदिश समीकरण द्वारा दिया गया है,यहाँ पे
- या
यहाँ पे , तथा डॉट उत्पाद को दर्शाता है।
अण्डाकार शंकु
एक अण्डाकार शंकु चतुर्भुज सतह [7]
यह एक जुडी हुई छवि है, जहां लम्ब गोलाकार इकाई शंकु की एक परिबद्ध छवि है। वास्तव में शंकु खंड की अनुकुल छवि (एफ्फिन इमेज ) एक ही प्रकार के (दीर्घवृत्त, परवलय,...) नमुनो मे मिलता है।
- अण्डाकार शंकु का कोई भी समतल भाग एक शंकु खंड होता है।
स्पष्ट है कि किसी भी लम्ब वृत्तीय शंकु में वृत्त होते हैं। यह भी सच है, लेकिन सामान्य मामले में कम स्पष्ट है (परिपत्र अनुभाग देखें)।
एक संकेंद्रित गोले के साथ दीर्घवृत्तीय शंकु का प्रतिच्छेदन एक गोलाकार शंकु है।
प्रक्षेप्य ज्यामिति
आकाश की ओर एक शंकु प्रतीत होता है। प्रक्षेप्य ज्यामिति में, एक बेलन केवल एक शंकु होता है जिसका शीर्ष अनंत पर होता है।[8]सहज रूप से, यदि कोई आधार को स्थिर रखता है और सीमा लेता है क्योंकि शीर्ष अनंत तक जाता है, तो उसे एक सिलेंडर प्राप्त होता है, एक समकोण बनाने वाली सीमा में, आर्कटन के रूप में बढ़ती हुई भुजा का कोण। यह अपक्षयी शांकवों की परिभाषा में उपयोगी है, जिसमें बेलनाकार शांकवों पर विचार करने की आवश्यकता होती है।
G. B. Halsted के अनुसार, स्टेनर शंकु के लिए उपयोग की जाने वाली प्रोजेक्टिव श्रेणियों के बजाय केवल एक प्रोजेक्टिविटी और अक्षीय पेंसिल (परिप्रेक्ष्य में नहीं) के साथ एक स्टेनर शंकु के समान एक शंकु उत्पन्न होता है:
यदि दो कॉपंक्चुअल नॉन-कोस्ट्रेट अक्षीय पेंसिल प्रोजेक्टिव हैं लेकिन परिप्रेक्ष्य नहीं हैं, तो सहसंबद्ध विमानों की मुलाकात 'दूसरे क्रम की शंकु सतह' या 'शंकु' बनाती है।[9]
उच्च आयाम
शंकु की परिभाषा को उच्च आयामों तक बढ़ाया जा सकता है (उत्तल शंकु देखें)। इस मामले में, कोई कहता है कि एक उत्तल समुच्चय C वास्तविक सदिश समष्टि 'R' में हैnएक शंकु है (मूल में शीर्ष के साथ) यदि सी में प्रत्येक वेक्टर एक्स और प्रत्येक गैर-ऋणात्मक वास्तविक संख्या ए के लिए, वेक्टर कुल्हाड़ी सी में है।[2] इस संदर्भ में, गोलाकार शंकु के अनुरूप आमतौर पर विशेष नहीं होते हैं; वास्तव में अक्सर बहुफलकीय शंकुओं में रुचि होती है।
यह भी देखें
- बीकोन
- शंकु (रैखिक बीजगणित)
- शंकु (टोपोलॉजी)
- सिलेंडर (ज्यामिति)
- डेमोक्रिटस
- सामान्यीकृत शंकु
- हाइपरबोलॉइड
- आकृतियों की सूची
- पाइरोमेट्रिक शंकु
- क्वाड्रिक
- कुल्हाड़ियों का घूमना
- शासित सतह
- कुल्हाड़ियों का अनुवाद
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 James, R. C.; James, Glenn (1992-07-31). The Mathematics Dictionary (in English). Springer Science & Business Media. pp. 74–75. ISBN 9780412990410.
- ↑ 2.0 2.1 ग्रुनबाम, उत्तल पॉलीटोप्स, दूसरा संस्करण, पी। 23.
- ↑ Weisstein, Eric W. "Cone". MathWorld.
- ↑ 4.0 4.1 Alexander, Daniel C.; Koeberlein, Geralyn M. (2014-01-01). Elementary Geometry for College Students (in English). Cengage Learning. ISBN 9781285965901.
- ↑ Hartshorne, Robin (2013-11-11). Geometry: Euclid and Beyond (in English). Springer Science & Business Media. Chapter 27. ISBN 9780387226767.
- ↑ Blank, Brian E.; Krantz, Steven George (2006-01-01). Calculus: Single Variable (in English). Springer Science & Business Media. Chapter 8. ISBN 9781931914598.
- ↑ Protter & Morrey (1970, p. 583)
- ↑ Dowling, Linnaeus Wayland (1917-01-01). Projective Geometry (in English). McGraw-Hill book Company, Incorporated.
- ↑ G. B. Halsted (1906) सिंथेटिक प्रोजेक्टिव ज्योमेट्री, पेज 20
संदर्भ
- Protter, Murray H.; Morrey, Jr., Charles B. (1970), College Calculus with Analytic Geometry (2nd ed.), Reading: Addison-Wesley, LCCN 76087042
बाहरी संबंध
- Weisstein, Eric W. "Cone". MathWorld.
- Weisstein, Eric W. "Double Cone". MathWorld.
- Weisstein, Eric W. "Generalized Cone". MathWorld.
- An interactive Spinning Cone from Maths Is Fun
- Paper model cone
- Lateral surface area of an oblique cone
- Cut a Cone An interactive demonstration of the intersection of a cone with a plane