उचित लंबाई: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
'''उचित लंबाई'''<ref name=fayngold>{{cite book |author=Moses Fayngold |title=विशेष सापेक्षता और यह कैसे काम करता है|location=John Wiley & Sons |year=2009 |isbn=978-3527406074}}</ref> या आराम की लंबाई<ref name=franklin>{{cite journal |author=Franklin, Jerrold |title=लोरेंत्ज़ संकुचन, बेल के अंतरिक्ष यान, और विशेष सापेक्षता में कठोर शरीर गति|journal=European Journal of Physics |volume=31 |year=2010 |pages=291–298 |doi=10.1088/0143-0807/31/2/006 |bibcode = 2010EJPh...31..291F |issue=2 |arxiv = 0906.1919 |s2cid=18059490 }}</ref> वस्तु के [[बाकी फ्रेम]] में किसी वस्तु की लंबाई है। | '''उचित लंबाई'''<ref name=fayngold>{{cite book |author=Moses Fayngold |title=विशेष सापेक्षता और यह कैसे काम करता है|location=John Wiley & Sons |year=2009 |isbn=978-3527406074}}</ref> या आराम की लंबाई<ref name=franklin>{{cite journal |author=Franklin, Jerrold |title=लोरेंत्ज़ संकुचन, बेल के अंतरिक्ष यान, और विशेष सापेक्षता में कठोर शरीर गति|journal=European Journal of Physics |volume=31 |year=2010 |pages=291–298 |doi=10.1088/0143-0807/31/2/006 |bibcode = 2010EJPh...31..291F |issue=2 |arxiv = 0906.1919 |s2cid=18059490 }}</ref> वस्तु के [[बाकी फ्रेम]] में किसी वस्तु की लंबाई है। | ||
[[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] की तुलना में [[सापेक्षता के सिद्धांत]] में लंबाई की माप अधिक सम्मिश्र | [[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] की तुलना में [[सापेक्षता के सिद्धांत]] में लंबाई की माप अधिक सम्मिश्र है, तथा मौलिक यांत्रिकी में, लंबाई इस धारणा के आधार पर मापी जाती है कि इसमें सम्मिलित सभी बिंदुओं के समष्टि को साथ मापा जाता है। लेकिन सापेक्षता के सिद्धांत में, साथ सापेक्षता की धारणा पर्यवेक्षक पर निर्भर है। | ||
इस प्रकार भिन्न शब्द, उचित दूरी, अपरिवर्तनीय माप प्रदान करता है जिसका मान सभी पर्यवेक्षकों के लिए समान है। | इस प्रकार भिन्न शब्द, उचित दूरी, अपरिवर्तनीय माप प्रदान करता है जिसका मान सभी पर्यवेक्षकों के लिए समान है। | ||
उचित दूरी [[उचित समय]] के समान है। तथा भिन्नता यह है कि उचित दूरी दो | उचित दूरी [[उचित समय]] के समान है। तथा भिन्नता यह है कि उचित दूरी दो समष्टि-समान-पृथक घटनाओं (या समष्टि -समान पथ के साथ) के मध्य परिभाषित की जाती है, जबकि उचित समय दो समय-समान-पृथक घटनाओं (या समय-समान पथ के साथ) के मध्य परिभाषित किया जाता है। | ||
== उचित लंबाई या बाकी लंबाई == | == उचित लंबाई या बाकी लंबाई == | ||
Line 24: | Line 24: | ||
:p। 407: ध्यान दें कि दो घटनाओं के मध्य की उचित दूरी सामान्यतः उस वस्तु की उचित लंबाई के समान नहीं होती है जिसके अंत बिंदु क्रमशः इन घटनाओं के साथ मेल खाते हैं। स्थिर उचित लंबाई l<sub>0</sub> की ठोस छड़ पर विचार करते है कि यदि आप विश्राम छड़ की, फ़्रेम K<sub>0</sub> में हैं और आप इसकी लंबाई मापना चाहते हैं, तब आप पहले इसके अंतिम बिंदुओं को चिह्नित करके ऐसा कर सकते हैं। और यह आवश्यक नहीं है कि आप इन्हें साथ K<sub>0</sub> में अंकित करें. आप अभी (t<sub>1</sub>पल में) किनारा को चिह्नित कर सकते हैं) और दूसरा किनारा पश्चात में ( क्षण में t<sub>2</sub>) K<sub>0</sub> में, और फिर चुपचाप इसके निशानों के मध्य की दूरी मापें। और हम ऐसे माप को उचित लंबाई की संभावित परिचालन परिभाषा के रूप में भी मान सकते हैं। प्रयोगात्मक भौतिकी के दृष्टिकोण से, स्थिर आकृति और आकार वाली स्थिर वस्तु के लिए साथ निशान बनाने की आवश्यकता अनावश्यक है, और इस स्तिथि में ऐसी परिभाषा से हटाया जा सकता है। चूँकि छड़ K<sub>0</sub> में स्थिर है, दोनों चिह्नों के मध्य समय अंतराल की परवाह किए बिना, निशानों के मध्य की दूरी छड़ी की उचित लंबाई है। दूसरी ओर, यदि K<sub>0</sub> में साथ निशान नहीं बनाए जाते हैं तो अंकन घटनाओं के मध्य उचित दूरी नहीं है. | :p। 407: ध्यान दें कि दो घटनाओं के मध्य की उचित दूरी सामान्यतः उस वस्तु की उचित लंबाई के समान नहीं होती है जिसके अंत बिंदु क्रमशः इन घटनाओं के साथ मेल खाते हैं। स्थिर उचित लंबाई l<sub>0</sub> की ठोस छड़ पर विचार करते है कि यदि आप विश्राम छड़ की, फ़्रेम K<sub>0</sub> में हैं और आप इसकी लंबाई मापना चाहते हैं, तब आप पहले इसके अंतिम बिंदुओं को चिह्नित करके ऐसा कर सकते हैं। और यह आवश्यक नहीं है कि आप इन्हें साथ K<sub>0</sub> में अंकित करें. आप अभी (t<sub>1</sub>पल में) किनारा को चिह्नित कर सकते हैं) और दूसरा किनारा पश्चात में ( क्षण में t<sub>2</sub>) K<sub>0</sub> में, और फिर चुपचाप इसके निशानों के मध्य की दूरी मापें। और हम ऐसे माप को उचित लंबाई की संभावित परिचालन परिभाषा के रूप में भी मान सकते हैं। प्रयोगात्मक भौतिकी के दृष्टिकोण से, स्थिर आकृति और आकार वाली स्थिर वस्तु के लिए साथ निशान बनाने की आवश्यकता अनावश्यक है, और इस स्तिथि में ऐसी परिभाषा से हटाया जा सकता है। चूँकि छड़ K<sub>0</sub> में स्थिर है, दोनों चिह्नों के मध्य समय अंतराल की परवाह किए बिना, निशानों के मध्य की दूरी छड़ी की उचित लंबाई है। दूसरी ओर, यदि K<sub>0</sub> में साथ निशान नहीं बनाए जाते हैं तो अंकन घटनाओं के मध्य उचित दूरी नहीं है. | ||
== समतल | == समतल समष्टि में दो घटनाओं के मध्य उचित दूरी == | ||
[[विशेष सापेक्षता]] में, दो | [[विशेष सापेक्षता]] में, दो समष्टि-पृथक घटनाओं के मध्य की उचित दूरी दो घटनाओं के मध्य की दूरी है, जैसा कि संदर्भ के जड़त्वीय फ्रेम में मापा जाता है जिसमें घटनाएं साथ होती हैं।<ref>{{cite book |title=Gravity: Newtonian, Post-Newtonian, Relativistic |edition=illustrated |first1=Eric |last1=Poisson |first2=Clifford M. |last2=Will |publisher=Cambridge University Press |year=2014 |isbn=978-1-107-03286-6 |page=191 |url=https://books.google.com/books?id=PZ5cAwAAQBAJ}} [https://books.google.com/books?id=PZ5cAwAAQBAJ&pg=PA191 Extract of page 191]</ref><ref>{{cite book |title=सौर मंडल के सापेक्ष आकाशीय यांत्रिकी|first1=Sergei |last1=Kopeikin |first2=Michael |last2=Efroimsky |first3=George |last3=Kaplan |publisher=John Wiley & Sons |year=2011 |isbn=978-3-527-63457-6 |page=136 |url=https://books.google.com/books?id=uN5_DQWSR14C}} [https://books.google.com/books?id=uN5_DQWSR14C&pg=PA136 Extract of page 136]</ref> ऐसे विशिष्ट फ्रेम में, दूरी दी जाती है | ||
<math display="block">\Delta\sigma=\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2} ,</math> | <math display="block">\Delta\sigma=\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2} ,</math> | ||
जहाँ | जहाँ | ||
* Δx, Δy, और Δz दो घटनाओं के रैखिक, | * Δx, Δy, और Δz दो घटनाओं के रैखिक, ओर्थोगोनल, त्रि-आयामी समष्टि निर्देशांक में भिन्नता हैं। | ||
यह परिभाषा संदर्भ के किसी भी जड़त्वीय फ्रेम के संबंध में समकक्ष रूप से दी जा सकती है (उस फ्रेम में घटनाओं के साथ होने की आवश्यकता के बिना) | यह परिभाषा संदर्भ के किसी भी जड़त्वीय फ्रेम के संबंध में समकक्ष रूप से दी जा सकती है (उस फ्रेम में घटनाओं के साथ होने की आवश्यकता के बिना) | ||
Line 39: | Line 39: | ||
*C [[प्रकाश की गति]] है. | *C [[प्रकाश की गति]] है. | ||
[[स्पेसटाइम अंतराल]] के अपरिवर्तनीयता के कारण दो सूत्र समतुल्य हैं, और चूंकि Δt = 0 बिल्कुल तब होता है जब घटनाएं दिए गए फ्रेम में साथ होती हैं। | [[स्पेसटाइम अंतराल|दिक्काल अंतराल]] के अपरिवर्तनीयता के कारण दो सूत्र समतुल्य हैं, और चूंकि Δt = 0 बिल्कुल तब होता है जब घटनाएं दिए गए फ्रेम में साथ होती हैं। | ||
दो घटनाओं को | दो घटनाओं को समष्टििक रूप से भिन्न किया जाता है यदि और केवल यदि उपरोक्त सूत्र Δσ के लिए वास्तविक, गैर-शून्य मान देता है। | ||
== पथ के अनुदिश उचित दूरी == | == पथ के अनुदिश उचित दूरी == | ||
दो घटनाओं के मध्य उचित दूरी के लिए उपरोक्त सूत्र मानता है कि वह | दो घटनाओं के मध्य उचित दूरी के लिए उपरोक्त सूत्र मानता है कि वह दिक्काल जिसमें दो घटनाएँ घटित होती हैं, समतल है। इसलिए, उपरोक्त सूत्र का उपयोग [[सामान्य सापेक्षता]] में नहीं किया जा सकता है, जिसमें वक्र दिक्काल पर विचार किया जाता है। चूँकि, किसी भी दिक्काल, वक्र या सपाट में [[पथ (टोपोलॉजी)]] के साथ उचित दूरी को परिभाषित करना संभव है। इसीलिए समतल दिक्काल में, दो घटनाओं के मध्य की उचित दूरी दो घटनाओं के मध्य सीधे रास्ते पर उचित दूरी होती है। वक्र दिक्काल में, दो घटनाओं के मध्य से अधिक सीधे पथ ([[जियोडेसिक (सामान्य सापेक्षता)]] हो सकते हैं, इसलिए दो घटनाओं के मध्य सीधे पथ के साथ उचित दूरी विशिष्ट रूप से दो घटनाओं के मध्य उचित दूरी को परिभाषित नहीं करेगी। | ||
इच्छानुसार स्पेसलाइक पथ p के साथ, | इच्छानुसार स्पेसलाइक पथ p के साथ, लाइन इंटीग्रल द्वारा [[ टेन्सर |टेन्सर]] सिंटैक्स में उचित दूरी दी गई है | ||
<math display="block">L = c \int_P \sqrt{-g_{\mu\nu} dx^\mu dx^\nu} ,</math> | <math display="block">L = c \int_P \sqrt{-g_{\mu\nu} dx^\mu dx^\nu} ,</math> | ||
जहाँ | जहाँ | ||
* g<sub>μν</sub> वर्तमान [[ अंतरिक्ष समय | | * g<sub>μν</sub> वर्तमान [[ अंतरिक्ष समय |समष्टि समय]] और समन्वय मानचित्रण के लिए [[मीट्रिक टेंसर (सामान्य सापेक्षता)]] है, और | ||
* <sup>dxμ</sup> पथ P के साथ निकटतम घटनाओं के मध्य समन्वय पृथक्करण है। | * <sup>dxμ</sup> पथ P के साथ निकटतम घटनाओं के मध्य समन्वय पृथक्करण है। | ||
Revision as of 13:03, 4 August 2023
उचित लंबाई[1] या आराम की लंबाई[2] वस्तु के बाकी फ्रेम में किसी वस्तु की लंबाई है।
मौलिक यांत्रिकी की तुलना में सापेक्षता के सिद्धांत में लंबाई की माप अधिक सम्मिश्र है, तथा मौलिक यांत्रिकी में, लंबाई इस धारणा के आधार पर मापी जाती है कि इसमें सम्मिलित सभी बिंदुओं के समष्टि को साथ मापा जाता है। लेकिन सापेक्षता के सिद्धांत में, साथ सापेक्षता की धारणा पर्यवेक्षक पर निर्भर है।
इस प्रकार भिन्न शब्द, उचित दूरी, अपरिवर्तनीय माप प्रदान करता है जिसका मान सभी पर्यवेक्षकों के लिए समान है।
उचित दूरी उचित समय के समान है। तथा भिन्नता यह है कि उचित दूरी दो समष्टि-समान-पृथक घटनाओं (या समष्टि -समान पथ के साथ) के मध्य परिभाषित की जाती है, जबकि उचित समय दो समय-समान-पृथक घटनाओं (या समय-समान पथ के साथ) के मध्य परिभाषित किया जाता है।
उचित लंबाई या बाकी लंबाई
किसी वस्तु की उचित लंबाई[1] या आराम की लंबाई[2] लंबाई पर्यवेक्षक द्वारा मापी गई वस्तु की लंबाई होती है जो वस्तु पर मानक मापने वाली छड़ें लगाकर उसके सापेक्ष आराम पर है। ऑब्जेक्ट के अंतिम बिंदुओं का माप साथ होना जरूरी नहीं है, क्योंकि ऑब्जेक्ट के रेस्ट फ्रेम में अंतिम बिंदु निरंतर ही स्थिति में आराम कर रहे हैं, इसलिए यह Δt से स्वतंत्र है। यह लंबाई इस प्रकार दी गई है:
चूँकि, अपेक्षाकृत गतिशील फ़्रेमों में ऑब्जेक्ट के अंतिम बिंदुओं को साथ मापना पड़ता है, क्योंकि वे निरंतर अपनी स्थिति परिवर्तित कर रहे हैं। परिणामी लंबाई शेष लंबाई से कम है, और लंबाई संकुचन के सूत्र द्वारा दी गई है (γ लोरेंत्ज़ कारक होने के साथ):
इसकी तुलना में, ही वस्तु के अंतिम बिंदुओं पर होने वाली दो इच्छानुसार घटनाओं के मध्य अपरिवर्तनीय उचित दूरी इस प्रकार दी जाती है:
तब Δσ Δt पर निर्भर करता है, जबकि (जैसा कि ऊपर बताया गया है) वस्तु की बाकी लंबाई L0 है जिसे Δt से स्वतंत्र रूप से मापा जा सकता है। यह इस प्रकार है कि Δσ और L0, ही वस्तु के अंतिम बिंदुओं पर मापा जाता है, और केवल दूसरे से सहमत होते हैं तब माप की घटनाएं वस्तु के बाकी फ्रेम में साथ होती हैं ताकि Δt शून्य हो। जैसा कि फेनगोल्ड ने समझाया हुआ होता है :[1]
- p। 407: ध्यान दें कि दो घटनाओं के मध्य की उचित दूरी सामान्यतः उस वस्तु की उचित लंबाई के समान नहीं होती है जिसके अंत बिंदु क्रमशः इन घटनाओं के साथ मेल खाते हैं। स्थिर उचित लंबाई l0 की ठोस छड़ पर विचार करते है कि यदि आप विश्राम छड़ की, फ़्रेम K0 में हैं और आप इसकी लंबाई मापना चाहते हैं, तब आप पहले इसके अंतिम बिंदुओं को चिह्नित करके ऐसा कर सकते हैं। और यह आवश्यक नहीं है कि आप इन्हें साथ K0 में अंकित करें. आप अभी (t1पल में) किनारा को चिह्नित कर सकते हैं) और दूसरा किनारा पश्चात में ( क्षण में t2) K0 में, और फिर चुपचाप इसके निशानों के मध्य की दूरी मापें। और हम ऐसे माप को उचित लंबाई की संभावित परिचालन परिभाषा के रूप में भी मान सकते हैं। प्रयोगात्मक भौतिकी के दृष्टिकोण से, स्थिर आकृति और आकार वाली स्थिर वस्तु के लिए साथ निशान बनाने की आवश्यकता अनावश्यक है, और इस स्तिथि में ऐसी परिभाषा से हटाया जा सकता है। चूँकि छड़ K0 में स्थिर है, दोनों चिह्नों के मध्य समय अंतराल की परवाह किए बिना, निशानों के मध्य की दूरी छड़ी की उचित लंबाई है। दूसरी ओर, यदि K0 में साथ निशान नहीं बनाए जाते हैं तो अंकन घटनाओं के मध्य उचित दूरी नहीं है.
समतल समष्टि में दो घटनाओं के मध्य उचित दूरी
विशेष सापेक्षता में, दो समष्टि-पृथक घटनाओं के मध्य की उचित दूरी दो घटनाओं के मध्य की दूरी है, जैसा कि संदर्भ के जड़त्वीय फ्रेम में मापा जाता है जिसमें घटनाएं साथ होती हैं।[3][4] ऐसे विशिष्ट फ्रेम में, दूरी दी जाती है
- Δx, Δy, और Δz दो घटनाओं के रैखिक, ओर्थोगोनल, त्रि-आयामी समष्टि निर्देशांक में भिन्नता हैं।
यह परिभाषा संदर्भ के किसी भी जड़त्वीय फ्रेम के संबंध में समकक्ष रूप से दी जा सकती है (उस फ्रेम में घटनाओं के साथ होने की आवश्यकता के बिना)
- Δt दो घटनाओं के समय निर्देशांक में भिन्नता है, और
- C प्रकाश की गति है.
दिक्काल अंतराल के अपरिवर्तनीयता के कारण दो सूत्र समतुल्य हैं, और चूंकि Δt = 0 बिल्कुल तब होता है जब घटनाएं दिए गए फ्रेम में साथ होती हैं।
दो घटनाओं को समष्टििक रूप से भिन्न किया जाता है यदि और केवल यदि उपरोक्त सूत्र Δσ के लिए वास्तविक, गैर-शून्य मान देता है।
पथ के अनुदिश उचित दूरी
दो घटनाओं के मध्य उचित दूरी के लिए उपरोक्त सूत्र मानता है कि वह दिक्काल जिसमें दो घटनाएँ घटित होती हैं, समतल है। इसलिए, उपरोक्त सूत्र का उपयोग सामान्य सापेक्षता में नहीं किया जा सकता है, जिसमें वक्र दिक्काल पर विचार किया जाता है। चूँकि, किसी भी दिक्काल, वक्र या सपाट में पथ (टोपोलॉजी) के साथ उचित दूरी को परिभाषित करना संभव है। इसीलिए समतल दिक्काल में, दो घटनाओं के मध्य की उचित दूरी दो घटनाओं के मध्य सीधे रास्ते पर उचित दूरी होती है। वक्र दिक्काल में, दो घटनाओं के मध्य से अधिक सीधे पथ (जियोडेसिक (सामान्य सापेक्षता) हो सकते हैं, इसलिए दो घटनाओं के मध्य सीधे पथ के साथ उचित दूरी विशिष्ट रूप से दो घटनाओं के मध्य उचित दूरी को परिभाषित नहीं करेगी।
इच्छानुसार स्पेसलाइक पथ p के साथ, लाइन इंटीग्रल द्वारा टेन्सर सिंटैक्स में उचित दूरी दी गई है
- gμν वर्तमान समष्टि समय और समन्वय मानचित्रण के लिए मीट्रिक टेंसर (सामान्य सापेक्षता) है, और
- dxμ पथ P के साथ निकटतम घटनाओं के मध्य समन्वय पृथक्करण है।
उपरोक्त समीकरण में, मीट्रिक टेंसर को +−−−
मीट्रिक हस्ताक्षर, 'का उपयोग करने के लिए माना जाता है और इसे दूरी के अतिरिक्त समय लौटाने के लिए सामान्यीकृत माना जाता है। जिसको समीकरण में − चिह्न को मीट्रिक टेंसर के साथ हटा दिया जाना चाहिए जो इसके अतिरिक्त −+++
मीट्रिक हस्ताक्षर का उपयोग करता है. तथा यह भी मीट्रिक टेंसर के साथ छोड़ा जाना चाहिए जो दूरी का उपयोग करने के लिए सामान्यीकृत है, या जो ज्यामितीय इकाई प्रणाली का उपयोग करता है।
यह भी देखें
- अपरिवर्तनीय अंतराल
- उचित समय
- आगमन दूरी
- साथ सापेक्षता
संदर्भ
- ↑ 1.0 1.1 1.2 Moses Fayngold (2009). विशेष सापेक्षता और यह कैसे काम करता है. John Wiley & Sons. ISBN 978-3527406074.
{{cite book}}
: CS1 maint: location missing publisher (link) - ↑ 2.0 2.1 Franklin, Jerrold (2010). "लोरेंत्ज़ संकुचन, बेल के अंतरिक्ष यान, और विशेष सापेक्षता में कठोर शरीर गति". European Journal of Physics. 31 (2): 291–298. arXiv:0906.1919. Bibcode:2010EJPh...31..291F. doi:10.1088/0143-0807/31/2/006. S2CID 18059490.
- ↑ Poisson, Eric; Will, Clifford M. (2014). Gravity: Newtonian, Post-Newtonian, Relativistic (illustrated ed.). Cambridge University Press. p. 191. ISBN 978-1-107-03286-6. Extract of page 191
- ↑ Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George (2011). सौर मंडल के सापेक्ष आकाशीय यांत्रिकी. John Wiley & Sons. p. 136. ISBN 978-3-527-63457-6. Extract of page 136