एनआईपी (मॉडल सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[मॉडल सिद्धांत]] में, [[गणितीय तर्क]] की एक शाखा, एक पूर्ण सिद्धांत ''T'' को ''''NIP'''<nowiki/>' (स्वतंत्रता गुण नहीं) को संतुष्ट करने के लिए कहा जाता है, यदि इसका कोई भी सूत्र 'स्वतंत्रता गुण' को संतुष्ट नहीं करता है - अर्थात, यदि इसका कोई भी सूत्र इच्छित रूप से बड़े परिमित सेट के किसी भी उपसमुच्चय को नहीं चुन सकता है।
[[मॉडल सिद्धांत]] में, [[गणितीय तर्क]] की शाखा, पूर्ण सिद्धांत ''T'' को ''''NIP'''<nowiki/>' (स्वतंत्रता गुण नहीं) को संतुष्ट करने के लिए कहा जाता है, यदि इसका कोई भी सूत्र 'स्वतंत्रता गुण' को संतुष्ट नहीं करता है - अर्थात, यदि इसका कोई भी सूत्र इच्छित रूप से बड़े परिमित सेट के किसी भी उपसमुच्चय को नहीं चुन सकता है।


==परिभाषा          ==
==परिभाषा          ==


मान लीजिए T एक पूर्ण L-सिद्धांत है। एक एल-सूत्र φ('''''x''''','''''y''''') को स्वतंत्रता गुण कहा जाता है ('''''x''''', '''''y''''' के संबंध में) यदि T के प्रत्येक मॉडल M में, प्रत्येक ''n'' = {0,1,…,''n'' − 1} < ω के लिए है टुपल्स का एक वर्ग '''''b'''''<sub>0</sub>,…,'''''b'''<sub>n</sub>''<sub>−1</sub> जैसे कि n के 2<sup>''n''</sup> उपसमुच्चय X में से प्रत्येक के लिए M में एक टुपल a है जिसके लिए
मान लीजिए T पूर्ण L-सिद्धांत है। एल-सूत्र φ('''''x''''','''''y''''') को स्वतंत्रता गुण कहा जाता है ('''''x''''', '''''y''''' के संबंध में) यदि T के प्रत्येक मॉडल M में, प्रत्येक ''n'' = {0,1,…,''n'' − 1} < ω के लिए है टुपल्स का वर्ग '''''b'''''<sub>0</sub>,…,'''''b'''<sub>n</sub>''<sub>−1</sub> जैसे कि n के 2<sup>''n''</sup> उपसमुच्चय X में से प्रत्येक के लिए M में टुपल a है जिसके लिए
:<math>M\models\varphi(\boldsymbol{a},\boldsymbol{b}_i)\quad\Leftrightarrow\quad  i\in X.                                                                                                                                                                                                                                   
:<math>M\models\varphi(\boldsymbol{a},\boldsymbol{b}_i)\quad\Leftrightarrow\quad  i\in X.                                                                                                                                                                                                                                   
                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                
                                                                                                                                                                           </math>
                                                                                                                                                                           </math>
सिद्धांत ''T'' को स्वतंत्रता गुण कहा जाता है यदि किसी सूत्र में स्वतंत्रता गुण है। यदि किसी ''L''-सूत्र में स्वतंत्रता गुण नहीं है तो ''T'' को आश्रित कहा जाता है, या एनआईपी को संतुष्ट करने के लिए कहा जाता है। एक एल-संरचना को स्वतंत्रता गुण (क्रमशः, एनआईपी) कहा जाता है यदि इसके सिद्धांत में स्वतंत्रता गुण (क्रमशः एनआईपी) होती है। यह शब्दावली [[बूलियन बीजगणित (संरचना)]] के अर्थ में स्वतंत्रता की धारणा से आती है।
सिद्धांत ''T'' को स्वतंत्रता गुण कहा जाता है यदि किसी सूत्र में स्वतंत्रता गुण है। यदि किसी ''L''-सूत्र में स्वतंत्रता गुण नहीं है तो ''T'' को आश्रित कहा जाता है, या एनआईपी को संतुष्ट करने के लिए कहा जाता है। एल-संरचना को स्वतंत्रता गुण (क्रमशः, एनआईपी) कहा जाता है यदि इसके सिद्धांत में स्वतंत्रता गुण (क्रमशः एनआईपी) होती है। यह शब्दावली [[बूलियन बीजगणित (संरचना)]] के अर्थ में स्वतंत्रता की धारणा से आती है।


वाप्निक-चेर्वोनेंकिस सिद्धांत के नामकरण में, हम कह सकते हैं कि ''X'' के उपसमुच्चय का एक संग्रह '''''S''''' एक सेट ''B'' ⊆ ''X'' को तोड़ देता है यदि ''B'' का प्रत्येक उपसमुच्चय कुछ ''S'' ∈ '''''S''''' के लिए ''B'' ∩ ''S'' के रूप का है। तब टी के पास स्वतंत्रता गुण है यदि T के कुछ मॉडल M में एक निश्चित वर्ग (''S<sub>a</sub>'' | ''a''∈''M<sup>n</sup>'') ⊆ ''M<sup>k</sup>'' है जो ''M<sup>k</sup>'' के इच्छित रूप से बड़े परिमित उपसमुच्चय को तोड़ देता है। दूसरे शब्दों में, (''S<sub>a</sub>'' | ''a''∈''M<sup>n</sup>'') में अनंत वापनिक-चेर्वोनेंकिस आयाम है।
वाप्निक-चेर्वोनेंकिस सिद्धांत के नामकरण में, हम कह सकते हैं कि ''X'' के उपसमुच्चय का संग्रह '''''S''''' सेट ''B'' ⊆ ''X'' को तोड़ देता है यदि ''B'' का प्रत्येक उपसमुच्चय कुछ ''S'' ∈ '''''S''''' के लिए ''B'' ∩ ''S'' के रूप का है। तब टी के पास स्वतंत्रता गुण है यदि T के कुछ मॉडल M में निश्चित वर्ग (''S<sub>a</sub>'' | ''a''∈''M<sup>n</sup>'') ⊆ ''M<sup>k</sup>'' है जो ''M<sup>k</sup>'' के इच्छित रूप से बड़े परिमित उपसमुच्चय को तोड़ देता है। दूसरे शब्दों में, (''S<sub>a</sub>'' | ''a''∈''M<sup>n</sup>'') में अनंत वापनिक-चेर्वोनेंकिस आयाम है।


==उदाहरण                                                              ==
==उदाहरण                                                              ==
Line 17: Line 17:
अंकगणित में, संरचना (AND,+,·) है, सूत्र "y, x को विभाजित करता है" में स्वतंत्रता गुण है।<ref>See Poizat, page 249.</ref> ये सूत्र बिल्कुल सही है
अंकगणित में, संरचना (AND,+,·) है, सूत्र "y, x को विभाजित करता है" में स्वतंत्रता गुण है।<ref>See Poizat, page 249.</ref> ये सूत्र बिल्कुल सही है
:<math>(\exists k)(y\cdot k=x).</math>
:<math>(\exists k)(y\cdot k=x).</math>
तो, किसी भी परिमित n के लिए हम n 1-टुपल्स ''b<sub>i</sub>'' को पहली n अभाज्य संख्याएँ मानते हैं, और फिर {0,1,…,''n'' − 1}के किसी उपसमुच्चय X के लिए हम a को उन ''b<sub>i</sub>'' का गुणनफल मानते हैं। कि ''i'' , ''X'' में हूं। फिर ''b<sub>i</sub>'' एक और केवल अगर ''i'' ∈ ''X'' विभाजित करता है।
तो, किसी भी परिमित n के लिए हम n 1-टुपल्स ''b<sub>i</sub>'' को पहली n अभाज्य संख्याएँ मानते हैं, और फिर {0,1,…,''n'' − 1}के किसी उपसमुच्चय X के लिए हम a को उन ''b<sub>i</sub>'' का गुणनफल मानते हैं। कि ''i'' , ''X'' में हूं। फिर ''b<sub>i</sub>'' और केवल अगर ''i'' ∈ ''X'' विभाजित करता है।


प्रत्येक [[ओ-न्यूनतम सिद्धांत]] एनआईपी को संतुष्ट करता है।<ref>Pillay and Steinhorn, corollary 3.10 and Knight, Pillay, and Steinhorn, theorem 0.2.</ref> इस तथ्य का तंत्रिका नेटवर्क सीखने में अप्रत्याशित अनुप्रयोग हुआ है।<ref>See Anthony and Bartlett for details.</ref>
प्रत्येक [[ओ-न्यूनतम सिद्धांत]] एनआईपी को संतुष्ट करता है।<ref>Pillay and Steinhorn, corollary 3.10 and Knight, Pillay, and Steinhorn, theorem 0.2.</ref> इस तथ्य का तंत्रिका नेटवर्क सीखने में अप्रत्याशित अनुप्रयोग हुआ है।<ref>See Anthony and Bartlett for details.</ref>

Revision as of 15:13, 4 August 2023

मॉडल सिद्धांत में, गणितीय तर्क की शाखा, पूर्ण सिद्धांत T को 'NIP' (स्वतंत्रता गुण नहीं) को संतुष्ट करने के लिए कहा जाता है, यदि इसका कोई भी सूत्र 'स्वतंत्रता गुण' को संतुष्ट नहीं करता है - अर्थात, यदि इसका कोई भी सूत्र इच्छित रूप से बड़े परिमित सेट के किसी भी उपसमुच्चय को नहीं चुन सकता है।

परिभाषा

मान लीजिए T पूर्ण L-सिद्धांत है। एल-सूत्र φ(x,y) को स्वतंत्रता गुण कहा जाता है (x, y के संबंध में) यदि T के प्रत्येक मॉडल M में, प्रत्येक n = {0,1,…,n − 1} < ω के लिए है टुपल्स का वर्ग b0,…,bn−1 जैसे कि n के 2n उपसमुच्चय X में से प्रत्येक के लिए M में टुपल a है जिसके लिए

सिद्धांत T को स्वतंत्रता गुण कहा जाता है यदि किसी सूत्र में स्वतंत्रता गुण है। यदि किसी L-सूत्र में स्वतंत्रता गुण नहीं है तो T को आश्रित कहा जाता है, या एनआईपी को संतुष्ट करने के लिए कहा जाता है। एल-संरचना को स्वतंत्रता गुण (क्रमशः, एनआईपी) कहा जाता है यदि इसके सिद्धांत में स्वतंत्रता गुण (क्रमशः एनआईपी) होती है। यह शब्दावली बूलियन बीजगणित (संरचना) के अर्थ में स्वतंत्रता की धारणा से आती है।

वाप्निक-चेर्वोनेंकिस सिद्धांत के नामकरण में, हम कह सकते हैं कि X के उपसमुच्चय का संग्रह S सेट BX को तोड़ देता है यदि B का प्रत्येक उपसमुच्चय कुछ SS के लिए BS के रूप का है। तब टी के पास स्वतंत्रता गुण है यदि T के कुछ मॉडल M में निश्चित वर्ग (Sa | aMn) ⊆ Mk है जो Mk के इच्छित रूप से बड़े परिमित उपसमुच्चय को तोड़ देता है। दूसरे शब्दों में, (Sa | aMn) में अनंत वापनिक-चेर्वोनेंकिस आयाम है।

उदाहरण

कोई भी पूर्ण सिद्धांत T जिसमें स्वतंत्रता गुण हो वह स्थिर सिद्धांत है।[1]

अंकगणित में, संरचना (AND,+,·) है, सूत्र "y, x को विभाजित करता है" में स्वतंत्रता गुण है।[2] ये सूत्र बिल्कुल सही है

तो, किसी भी परिमित n के लिए हम n 1-टुपल्स bi को पहली n अभाज्य संख्याएँ मानते हैं, और फिर {0,1,…,n − 1}के किसी उपसमुच्चय X के लिए हम a को उन bi का गुणनफल मानते हैं। कि i , X में हूं। फिर bi और केवल अगर iX विभाजित करता है।

प्रत्येक ओ-न्यूनतम सिद्धांत एनआईपी को संतुष्ट करता है।[3] इस तथ्य का तंत्रिका नेटवर्क सीखने में अप्रत्याशित अनुप्रयोग हुआ है।[4]

एनआईपी सिद्धांतों के उदाहरणों में निम्नलिखित सभी संरचनाओं के सिद्धांत भी सम्मिलित हैं:[5] कुल क्रम, ट्री(सेट सिद्धांत), एबेलियन रैखिक रूप से आदेशित समूह, बीजगणितीय रूप से संवर्त मूल्य क्षेत्र, और किसी भी p के लिए p-एडिक संख्या है

टिप्पणियाँ

  1. See Hodges.
  2. See Poizat, page 249.
  3. Pillay and Steinhorn, corollary 3.10 and Knight, Pillay, and Steinhorn, theorem 0.2.
  4. See Anthony and Bartlett for details.
  5. See Simon, Appendix A.


संदर्भ

  • Anthony, Martin; Bartlett, Peter L. (1999). Neural network learning: theoretical foundations. Cambridge University Press. ISBN 978-0-521-57353-5.
  • Hodges, Wilfrid (1993). Model theory. Cambridge University Press. ISBN 978-0-521-30442-9.
  • Knight, Julia; Pillay, Anand; Steinhorn, Charles (1986). "Definable sets in ordered structures II". Transactions of the American Mathematical Society. 295 (2): 593–605. doi:10.2307/2000053. JSTOR 2000053.
  • Pillay, Anand; Steinhorn, Charles (1986). "Definable sets in ordered structures I". Transactions of the American Mathematical Society. 295 (2): 565–592. doi:10.2307/2000052. JSTOR 2000052.
  • Poizat, Bruno (2000). A Course in Model Theory. Springer. ISBN 978-0-387-98655-5.
  • Simon, Pierre (2015). A Guide to NIP Theories. Cambridge University Press. ISBN 9781107057753.