क्षमता के गुणांक: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 85: | Line 85: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 07/08/2023]] | [[Category:Created On 07/08/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 10:43, 10 August 2023
स्थिर वैद्युत भंडारण में, क्षमता के गुणांक विद्युत आवेश और स्थिरवैद्युत विभव (विद्युत क्षमता) के बीच संबंध निर्धारित करते हैं, जो विशुद्ध रूप से ज्यामितीय है:
जहाँ Qi चालक पर सतही आवेश i है। क्षमता के गुणांक गुणांक pij हैं। φi को i-वें संवाहक पर विभव के रूप में सही ढंग से पढ़ा जाना चाहिए, और इसलिए संवाहक 2 पर प्रभार 1 के कारण p है।
ध्यान दें कि:
- pij = pji, समरूपता द्वारा, और
- pij प्रभार पर निर्भर नहीं है।
समरूपता की भौतिक विषयवस्तु इस प्रकार है:
- यदि संवाहक j पर कोई प्रभार Q संवाहक i को संभावित φ पर लाता है, तो i पर रखा गया वही प्रभार j को समान क्षमता φ पर लाएगा।
सामान्यतः, गुणांक का उपयोग संवाहकों की प्रणाली का वर्णन जैसे कि संधारित्र में करते समय किया जाता है।
सिद्धांत
किसी चालक सतह पर विद्युत क्षमता को देखते हुए Si (समविभव सतह या बिंदु P सतह पर चुना गया i) संवाहकों की एक प्रणाली में j = 1, 2, ..., n निहित है:
जहां Rji = |ri - rj|, यानी संवाहक i पर क्षेत्रफल-अवयव daj से एक विशेष बिंदु ri तक की दूरी है। σj, सामान्यतः, सतह पर समान रूप से वितरित नहीं है। आइए हम कारक fj का परिचय दें जो बताता है कि j-वें संवाहक की सतह पर स्थिति पर वास्तविक प्रभार घनत्व औसत और खुद से कैसे भिन्न होता है:
या
तब,
ऐसा दिखाया जा सकता है वितरण से स्वतंत्र है। इसलिए, साथ
अपने पास
उदाहरण
इस उदाहरण में, हम दो-संवाहक प्रणाली पर धारिता निर्धारित करने के लिए क्षमता के गुणांक की विधि का उपयोग करते हैं।
दो-संचालक प्रणाली के लिए, रैखिक समीकरणों की प्रणाली है
एक संधारित्र पर, दो चालकों पर आवेश बराबर और विपरीत होता है: Q = Q1 = -Q2। इसलिए,
और
इस तरह,
संबंधित गुणांक
ध्यान दें कि रैखिक समीकरणों की सरणी
को उलटा किया जा सकता है
जहां i = j के साथ cij को क्षमता के गुणांक कहा जाता है और i ≠ j के साथ cij को स्थिर वैद्युत प्रेरण के गुणांक कहा जाता है। [1]
एक ही क्षमता पर रखे गए दो गोलाकार संवाहकों की एक प्रणाली के लिए, [2]
यदि दो संवाहक समान और विपरीत प्रभार ले जाते हैं,
संवाहकों की प्रणाली में समान समरूपता cij = cji दिखाई जा सकती है।
संदर्भ
- ↑ L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Course of Theoretical Physics, Vol. 8), 2nd ed. (Butterworth-Heinemann, Oxford, 1984) p. 4.
- ↑ Lekner, John (2011-02-01). "दो गोले के धारिता गुणांक". Journal of Electrostatics. 69 (1): 11–14. doi:10.1016/j.elstat.2010.10.002.
- James Clerk Maxwell (1873) A Treatise on Electricity and Magnetism, § 86, page 89.