जैकनाइफ क्रॉस-वैलिडेशन: Difference between revisions

From Vigyanwiki
(text)
(text)
Line 16: Line 16:
जहां अंतिम योग यह इंगित करने के लिए अन्य तरीके का उपयोग करता है कि सूचकांक आई समुच्चय पर चलता है.<math>[n] = \{ 1,\ldots,n\}</math>
जहां अंतिम योग यह इंगित करने के लिए अन्य तरीके का उपयोग करता है कि सूचकांक आई समुच्चय पर चलता है.<math>[n] = \{ 1,\ldots,n\}</math>


फिर हम निम्नानुसार आगे बढ़ते हैं:प्रत्येक <math>i \in [n]</math> के लिए हम आई-वें आंकड़े बिंदु को छोड़कर सभी से युक्त जैकनाइफ उप- के माध्य <math>\bar{x}_{(i)}</math>की गणना करते हैं, और इसे आई-वें जैकनाइफ प्रतिकृति कहा जाता है:
फिर हम निम्नानुसार आगे बढ़ते हैं: प्रत्येक <math>i \in [n]</math> के लिए हम आई-वें आंकड़े बिंदु को छोड़कर सभी से युक्त जैकनाइफ उप-प्रतिरूप के माध्य <math>\bar{x}_{(i)}</math>की गणना करते हैं, और इसे आई-वें जैकनाइफ प्रतिकृति कहा जाता है:


:<math>\bar{x}_{(i)} =\frac{1}{n-1} \sum_{j \in [n], j\ne i} x_j, \quad \quad i=1, \dots ,n.</math>
:<math>\bar{x}_{(i)} =\frac{1}{n-1} \sum_{j \in [n], j\ne i} x_j, \quad \quad i=1, \dots ,n.</math>
यह सोचने में मदद मिल सकती है कि ये <math>n</math> जैकनाइफ़ <math>\bar{x}_{(1)},\ldots,\bar{x}_{(n)}</math> की प्रतिकृति बनाते हैं, जो हमें प्रतिरूप माध्य के वितरण का एक अनुमान देते हैं, <math>\bar{x}</math> और <math>n</math> जितना बड़ा होगा, यह अनुमान उतना ही बेहतर होगा। फिर अंततः जैकनाइफ अनुमानक प्राप्त करने के लिए हम इन <math>n</math> जैकनाइफ प्रतिकृति'''यों का औसत लेते हैं:'''
यह सोचने में मदद मिल सकती है कि ये <math>n</math> जैकनाइफ़ <math>\bar{x}_{(1)},\ldots,\bar{x}_{(n)}</math> की प्रतिकृति बनाते हैं, जो हमें प्रतिरूप माध्य के वितरण का एक अनुमान देते हैं, <math>\bar{x}</math> और <math>n</math> जितना बड़ा होगा, यह अनुमान उतना ही बेहतर होगा। फिर अंततः जैकनाइफ अनुमानक प्राप्त करने के लिए हम इन <math>n</math> जैकनाइफ प्रतिकृतियों का औसत लेते हैं:


:<math>\bar{x}_{\mathrm{jack}} = \frac{1}{n}\sum_{i=1}^n \bar{x}_{(i)}.</math>
:<math>\bar{x}_{\mathrm{jack}} = \frac{1}{n}\sum_{i=1}^n \bar{x}_{(i)}.</math>
कोई पूर्वाग्रह और भिन्नता के बारे में पूछ सकता है <math>\bar{x}_{\mathrm{jack}}</math>. की परिभाषा से <math>\bar{x}_{\mathrm{jack}}</math> जैसा कि जैकनाइफ़ के औसत की प्रतिकृति से कोई स्पष्ट रूप से गणना करने का प्रयास कर सकता है, और पूर्वाग्रह एक तुच्छ गणना है लेकिन इसका विचरण <math>\bar{x}_{\mathrm{jack}}</math> अधिक सम्मिलित है क्योंकि जैकनाइफ़ प्रतिकृति स्वतंत्र नहीं हैं।
'''कोई पूर्वाग्रह और भिन्नता के बारे में पूछ सकता है <math>\bar{x}_{\mathrm{jack}}</math>. की परिभाषा से <math>\bar{x}_{\mathrm{jack}}</math> जैसा कि जैकनाइफ़ के औसत की प्रतिकृति से कोई स्पष्ट रूप से गणना करने का प्रयास कर सकता है, और पूर्वाग्रह एक तुच्छ गणना है लेकिन इसका विचरण <math>\bar{x}_{\mathrm{jack}}</math> अधिक सम्मिलित है क्योंकि जैकनाइफ़ प्रतिकृति स्वतंत्र नहीं हैं।'''


माध्य के विशेष मामले के लिए, कोई स्पष्ट रूप से दिखा सकता है कि जैकनाइफ़ अनुमान सामान्य अनुमान के बराबर है:
माध्य के विशेष मामले के लिए, कोई स्पष्ट रूप से दिखा सकता है कि जैकनाइफ़ अनुमान सामान्य अनुमान के बराबर है:


:<math>\frac{1}{n}\sum_{i=1}^n \bar{x}_{(i)} = \bar{x}.</math>
:<math>\frac{1}{n}\sum_{i=1}^n \bar{x}_{(i)} = \bar{x}.</math>
इससे पहचान स्थापित होती है <math>\bar{x}_{\mathrm{jack}} = \bar{x}</math>. फिर उम्मीदें लेकर हम मिलते हैं <math>E[\bar{x}_{\mathrm{jack}}] = E[\bar{x}] =E[x]</math>, इसलिए <math>\bar{x}_{\mathrm{jack}}</math> निष्पक्ष है, भिन्नता लेते हुए हमें मिलता है <math>V[\bar{x}_{\mathrm{jack}}] = V[\bar{x}] =V[x]/n</math>. हालाँकि, ये गुण सामान्य रूप से माध्य के अलावा अन्य मापदंडों के लिए मान्य नहीं हैं।
'''इससे <math>\bar{x}_{\mathrm{jack}} = \bar{x}</math> पहचान स्थापित होती है। फिर उम्मीदें लेकर हम मिलते हैं <math>E[\bar{x}_{\mathrm{jack}}] = E[\bar{x}] =E[x]</math>, इसलिए <math>\bar{x}_{\mathrm{jack}}</math> निष्पक्ष है, भिन्नता लेते हुए हमें मिलता है <math>V[\bar{x}_{\mathrm{jack}}] = V[\bar{x}] =V[x]/n</math>.''' हालाँकि, ये गुण सामान्य रूप से माध्य के अलावा अन्य मापदंडों के लिए मान्य नहीं हैं।


माध्य अनुमान के मामले के लिए यह सरल उदाहरण केवल जैकनाइफ अनुमानक के निर्माण को दर्शाने के लिए है, जबकि वास्तविक सूक्ष्मताएं (और उपयोगिता) अन्य मापदंडों के अनुमान के मामले में उभरती हैं, जैसे कि माध्य से अधिक क्षण या वितरण के अन्य कार्य।
माध्य अनुमान के मामले के लिए यह सरल उदाहरण केवल जैकनाइफ अनुमानक के निर्माण को दर्शाने के लिए है, जबकि वास्तविक सूक्ष्मताएं (और उपयोगिता) अन्य मापदंडों के अनुमान के मामले में उभरती हैं, जैसे कि माध्य से अधिक क्षण या वितरण के अन्य कार्य।


ध्यान दें कि <math>\bar{x}_{\mathrm{jack}}</math> के पूर्वाग्रह का अनुभवजन्य अनुमान बनाने के लिए इस्तेमाल किया जा सकता है <math>\bar{x}</math>, अर्थात् <math>\widehat{\operatorname{bias}}(\bar{x})_{\mathrm{jack}} = c(\bar{x}_{\mathrm{jack}} - \bar{x})</math> कुछ उपयुक्त कारक के साथ <math>c>0</math>, हालाँकि इस मामले में हम यह जानते हैं <math>\bar{x}_{\mathrm{jack}} = \bar{x}</math> इसलिए यह निर्माण कोई सार्थक ज्ञान नहीं जोड़ता है, लेकिन यह ध्यान देने योग्य है कि यह पूर्वाग्रह का सही अनुमान देता है (जो शून्य है)।
'''ध्यान दें कि <math>\bar{x}_{\mathrm{jack}}</math> के पूर्वाग्रह का अनुभवजन्य अनुमान बनाने के लिए <math>\bar{x}</math> का इस्तेमाल किया जा सकता है , अर्थात् <math>\widehat{\operatorname{bias}}(\bar{x})_{\mathrm{jack}} = c(\bar{x}_{\mathrm{jack}} - \bar{x})</math> कुछ उपयुक्त कारक के साथ <math>c>0</math>, हालाँकि इस मामले में हम यह जानते हैं <math>\bar{x}_{\mathrm{jack}} = \bar{x}</math> इसलिए यह निर्माण कोई सार्थक ज्ञान नहीं जोड़ता है, लेकिन यह ध्यान देने योग्य है कि यह पूर्वाग्रह का सही अनुमान देता है (जो शून्य है)।'''


के विचरण का एक जैकनाइफ़ अनुमान <math>\bar{x}</math> जैकनाइफ प्रतिकृति के विचरण से गणना की जा सकती है <math>\bar{x}_{(i)}</math>:{{sfn|Efron|1982|p=14}}<ref>{{cite web|last1=McIntosh|first1=Avery I.|title=जैकनाइफ़ आकलन विधि|url=http://people.bu.edu/aimcinto/jackknife.pdf|website=Boston University|publisher=Avery I. McIntosh|access-date=2016-04-30|archive-date=2016-05-14|archive-url=https://web.archive.org/web/20160514022307/http://people.bu.edu/aimcinto/jackknife.pdf|url-status=dead}}: p. 3.</ref>
जैकनाइफ के प्रसरण के अनुमान <math>\bar{x}</math> की गणना जैकनाइफ प्रतिकृति <math>\bar{x}_{(i)}</math>के प्रसरण से की जा सकती है: {{sfn|Efron|1982|p=14}}<ref>{{cite web|last1=McIntosh|first1=Avery I.|title=जैकनाइफ़ आकलन विधि|url=http://people.bu.edu/aimcinto/jackknife.pdf|website=Boston University|publisher=Avery I. McIntosh|access-date=2016-04-30|archive-date=2016-05-14|archive-url=https://web.archive.org/web/20160514022307/http://people.bu.edu/aimcinto/jackknife.pdf|url-status=dead}}: p. 3.</ref>
:<math>\widehat{\operatorname{var}}(\bar{x})_{\mathrm{jack}}
:<math>\widehat{\operatorname{var}}(\bar{x})_{\mathrm{jack}}
=\frac{n-1}{n} \sum_{i=1}^n (\bar{x}_{(i)} - \bar{x}_{\mathrm{jack}})^2  
=\frac{n-1}{n} \sum_{i=1}^n (\bar{x}_{(i)} - \bar{x}_{\mathrm{jack}})^2  
=\frac{1}{n(n-1)} \sum_{i=1}^n (x_i - \bar{x})^2.</math>
=\frac{1}{n(n-1)} \sum_{i=1}^n (x_i - \bar{x})^2.</math>
बाईं समानता अनुमानक को परिभाषित करती है <math>\widehat{\operatorname{var}}(\bar{x})_{\mathrm{jack}}</math> और सही समानता एक पहचान है जिसे सीधे सत्यापित किया जा सकता है। फिर उम्मीदें लेकर हम मिलते हैं <math>E[\widehat{\operatorname{var}}(\bar{x})_{\mathrm{jack}}] = V[x]/n = V[\bar{x}]</math>, इसलिए यह विचरण का एक निष्पक्ष अनुमानक है <math>\bar{x}</math>.
'''बाईं ओर की समानता अनुमानक <math>\widehat{\operatorname{var}}(\bar{x})_{\mathrm{jack}}</math>को परिभाषित करती है, और सही समानता एक पहचान है जिसे सीधे सत्यापित किया जा सकता है। फिर उम्मीदें लेकर हम मिलते हैं <math>E[\widehat{\operatorname{var}}(\bar{x})_{\mathrm{jack}}] = V[x]/n = V[\bar{x}]</math>, इसलिए यह विचरण का एक निष्पक्ष अनुमानक <math>\bar{x}</math> है .'''


==आकलनकर्ता के पूर्वाग्रह का अनुमान लगाना==
==आकलनकर्ता के पूर्वाग्रह का अनुमान लगाना==
जैकनाइफ तकनीक का उपयोग पूरे प्रतिरूपपर गणना किए गए अनुमानक के पूर्वाग्रह का अनुमान लगाने (और सही करने) के लिए किया जा सकता है।
जैकनाइफ तकनीक का उपयोग संपूर्ण प्रतिरूप पर गणना किए गए अनुमानक के पूर्वाग्रह का अनुमान लगाने (और सही करने) के लिए किया जा सकता है।


कल्पना करना <math>\theta</math> रुचि का लक्ष्यमापदण्ड है, जिसे वितरण के कुछ कार्यात्मक माना जाता है <math>x</math>. अवलोकनों के एक सीमित समुच्चयपर आधारित <math>x_1, ..., x_n</math>, जिसमें आई.आई.डी. सम्मिलित माना जाता है। की प्रतियाँ <math>x</math>, अनुमानक <math>\hat{\theta}</math> निर्माण किया है:
मान लीजिए <math>\theta</math> ब्याज का लक्ष्य मापदण्ड है, जिसे <math>x</math> के वितरण की कुछ कार्यात्मकता माना जाता है। अवलोकनों के एक सीमित समुच्चय पर आधारित <math>x_1, ..., x_n</math>, जिसमें आई.आई.डी. सम्मिलित माना जाता है। '''<math>x</math> की प्रतियाँ,अनुमानक <math>\hat{\theta}</math> का निर्माण किया गया है:'''


:<math>\hat{\theta} =f_n(x_1,\ldots,x_n).</math>
:<math>\hat{\theta} =f_n(x_1,\ldots,x_n).</math>
का मान है <math>\hat{\theta}</math> नमूना-निर्भर है, इसलिए यह मान एक यादृच्छिक प्रतिरूपसे दूसरे में बदल जाएगा।
<math>\hat{\theta}</math> का मान प्रतिरूप-निर्भर है, इसलिए यह मान एक यादृच्छिक प्रतिरूप से अन्य यादृच्छिक प्रतिरूप में बदल जाएगा।


परिभाषा के अनुसार, का पूर्वाग्रह <math>\hat{\theta}</math> इस प्रकार है:
परिभाषा के अनुसार, <math>\hat{\theta}</math> का पूर्वाग्रह इस प्रकार है:


:<math>\text{bias}(\hat{\theta}) = E[\hat{\theta}] - \theta.</math>
:<math>\text{bias}(\hat{\theta}) = E[\hat{\theta}] - \theta.</math>
कोई व्यक्ति कई मानों की गणना करना चाह सकता है <math>\hat{\theta}</math> अनुभवजन्य अनुमान की गणना करने के लिए, कई नमूनों से, और उनका औसत निकालें <math>E[\hat{\theta}]</math>, लेकिन यह तब असंभव है जब उपलब्ध अवलोकनों के पूरे समुच्चयमें कोई अन्य प्रतिरूपन हों <math>x_1, ..., x_n</math> गणना करने के लिए प्रयोग किया जाता था <math>\hat{\theta}</math>. इस तरह की स्थिति में जैकनाइफ रीसैंपलिंग तकनीक मददगार हो सकती है।
'''कोई व्यक्ति अनेक प्रतिरूपों से <math>\hat{\theta}</math> के अनेक मानों की गणना करना चाह सकता है, अनेक प्रतिरूपों से, और उनका औसत निकालें <math>E[\hat{\theta}]</math>, लेकिन यह तब असंभव है जब उपलब्ध अवलोकनों के पूरे समुच्चयमें कोई अन्य प्रतिरूपन हों <math>x_1, ..., x_n</math> गणना करने के लिए प्रयोग किया जाता था <math>\hat{\theta}</math>. इस तरह की स्थिति में जैकनाइफ रीसैंपलिंग तकनीक मददगार हो सकती है।'''


हम जैकनाइफ प्रतिकृति का निर्माण करते हैं:
हम जैकनाइफ प्रतिकृति का निर्माण करते हैं:


:<math>\hat{\theta}_{(1)} =f_{n-1}(x_{2},x_{3}\ldots,x_{n})</math>
:<math>\hat{\theta}_{(1)} =f_{n-1}(x_{2},x_{3}\ldots,x_{n})</math>
:<math>\hat{\theta}_{(2)} =f_{n-1}(x_{1},x_{3},\ldots,x_{n})</math>
:<math>\hat{\theta}_{(2)} =f_{n-1}(x_{1},x_{3},\ldots,x_{n})</math> <math>\vdots</math>
:<math>\vdots</math>
:<math>\hat{\theta}_{(n)} =f_{n-1}(x_1,x_{2},\ldots,x_{n-1})</math>
:<math>\hat{\theta}_{(n)} =f_{n-1}(x_1,x_{2},\ldots,x_{n-1})</math>
जहां प्रत्येक प्रतिकृति जैकनाइफ सबसैंपल के आधार पर एक लीव-वन-आउट अनुमान है, जिसमें डेटा बिंदुओं में से एक को छोड़कर सभी सम्मिलित हैं:
जहां प्रत्येक प्रतिकृति जैकनाइफ उपप्रतिदर्श के आधार पर एक लीव-वन-आउट अनुमान है, जिसमें आंकड़े बिंदुओं में से एक को छोड़कर सभी सम्मिलित हैं:


:<math>\hat{\theta}_{(i)} =f_{n-1}(x_{1},\ldots,x_{i-1},x_{i+1},\ldots,x_{n}) \quad \quad i=1, \dots,n.</math>
:<math>\hat{\theta}_{(i)} =f_{n-1}(x_{1},\ldots,x_{i-1},x_{i+1},\ldots,x_{n}) \quad \quad i=1, \dots,n.</math>
Line 70: Line 69:
=\hat{\theta} - \widehat{\text{bias}}(\hat{\theta})_\mathrm{jack}
=\hat{\theta} - \widehat{\text{bias}}(\hat{\theta})_\mathrm{jack}
=n\hat{\theta} - (n-1)\hat{\theta}_\mathrm{jack}.</math>
=n\hat{\theta} - (n-1)\hat{\theta}_\mathrm{jack}.</math>
यह उस विशेष मामले में पूर्वाग्रह को दूर करता है जो पूर्वाग्रह है <math>O(n^{-1})</math> और इसे कम कर देता है <math>O(n^{-2})</math> अन्य मामलों में।{{sfn|Cameron|Trivedi|2005|p=375}}
यह उस विशेष मामले में पूर्वाग्रह को हटा देता है जिसमें पूर्वाग्रह <math>O(n^{-1})</math> है, और अन्य मामलों में इसे घटाकर <math>O(n^{-2})</math> कर देता है। {{sfn|Cameron|Trivedi|2005|p=375}}


==एक अनुमानक के विचरण का अनुमान लगाना==
==एक अनुमानक के विचरण का अनुमान लगाना==
जैकनाइफ तकनीक का उपयोग पूरे प्रतिरूपपर गणना किए गए अनुमानक के विचरण का अनुमान लगाने के लिए भी किया जा सकता है।
जैकनाइफ तकनीक का उपयोग संपूर्ण प्रतिरूप पर गणना किए गए अनुमानक के विचरण का अनुमान लगाने के लिए भी किया जा सकता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 12:50, 5 August 2023

आँकड़ों में, जैकनाइफ़ (जैकनाइफ़ अंतः वैधीकरण) एक अंतः वैधीकरण तकनीक है और इसलिए, यह पुनः प्रतिचयन का एक रूप है।

यह पूर्वाग्रह और भिन्नता अनुमान के लिए विशेष रूप से उपयोगी है। जैकनाइफ़ बूटस्ट्रैप (सांख्यिकी) जैसी अन्य सामान्य पुन: प्रतिचयन विधियों को पूर्व-दिनांकित करता है। आकार n के एक प्रतिरूप को देखते हुए, एक अवलोकन को छोड़कर प्राप्त आकार (n-1) के प्रत्येक उप-प्रतिरूप से मापदण्ड अनुमान को एकत्रित करके एक जैकनाइफ अनुमानक बनाया जा सकता है। [1]

जैकनाइफ तकनीक को मौरिस क्वेनोइल (1924-1973) द्वारा 1949 में विकसित किया गया था और 1956 में परिष्कृत किया गया था। जॉन तुकी ने 1958 में इस तकनीक का विस्तार किया और "जैकनाइफ" नाम प्रस्तावित किया, क्योंकि एक भौतिक जैक-नाइफ (एक कॉम्पैक्ट फोल्डिंग चाकू) की तरह, यह एक काम चलाऊ उपकरण है जो विभिन्न प्रकार की समस्याओं के लिए भी समाधान निकाल सकता है। हालाँकि उद्देश्य-डिज़ाइन किए गए उपकरण से विशिष्ट समस्याओं को अधिक निपूणता से हल किया जा सकता है। [2]

जैकनाइफ़ बूटस्ट्रैप (सांख्यिकी) का एक रैखिक सादृश्य है। [2]

एक सरल उदाहरण: माध्य अनुमान

एक मापदण्ड का जैकनाइफ अनुमानक एक आंकड़े समुच्चय से प्रत्येक अवलोकन को व्यवस्थित रूप से छोड़कर और शेष अवलोकनों पर मापदण्ड अनुमान की गणना करके और फिर इन गणनाओं को एकत्रित करके पाया जाता है।

उदाहरण के लिए, यदि अनुमान लगाया जाने वाला मापदण्ड यादृच्छिक चर x का जनसंख्या माध्य है,फिर आई.आई.डी. के दिए गए समुच्चय के लिए प्रेक्षण प्राकृतिक अनुमानक प्रतिरूप माध्य है:

जहां अंतिम योग यह इंगित करने के लिए अन्य तरीके का उपयोग करता है कि सूचकांक आई समुच्चय पर चलता है.

फिर हम निम्नानुसार आगे बढ़ते हैं: प्रत्येक के लिए हम आई-वें आंकड़े बिंदु को छोड़कर सभी से युक्त जैकनाइफ उप-प्रतिरूप के माध्य की गणना करते हैं, और इसे आई-वें जैकनाइफ प्रतिकृति कहा जाता है:

यह सोचने में मदद मिल सकती है कि ये जैकनाइफ़ की प्रतिकृति बनाते हैं, जो हमें प्रतिरूप माध्य के वितरण का एक अनुमान देते हैं, और जितना बड़ा होगा, यह अनुमान उतना ही बेहतर होगा। फिर अंततः जैकनाइफ अनुमानक प्राप्त करने के लिए हम इन जैकनाइफ प्रतिकृतियों का औसत लेते हैं:

कोई पूर्वाग्रह और भिन्नता के बारे में पूछ सकता है . की परिभाषा से जैसा कि जैकनाइफ़ के औसत की प्रतिकृति से कोई स्पष्ट रूप से गणना करने का प्रयास कर सकता है, और पूर्वाग्रह एक तुच्छ गणना है लेकिन इसका विचरण अधिक सम्मिलित है क्योंकि जैकनाइफ़ प्रतिकृति स्वतंत्र नहीं हैं।

माध्य के विशेष मामले के लिए, कोई स्पष्ट रूप से दिखा सकता है कि जैकनाइफ़ अनुमान सामान्य अनुमान के बराबर है:

इससे पहचान स्थापित होती है। फिर उम्मीदें लेकर हम मिलते हैं , इसलिए निष्पक्ष है, भिन्नता लेते हुए हमें मिलता है . हालाँकि, ये गुण सामान्य रूप से माध्य के अलावा अन्य मापदंडों के लिए मान्य नहीं हैं।

माध्य अनुमान के मामले के लिए यह सरल उदाहरण केवल जैकनाइफ अनुमानक के निर्माण को दर्शाने के लिए है, जबकि वास्तविक सूक्ष्मताएं (और उपयोगिता) अन्य मापदंडों के अनुमान के मामले में उभरती हैं, जैसे कि माध्य से अधिक क्षण या वितरण के अन्य कार्य।

ध्यान दें कि के पूर्वाग्रह का अनुभवजन्य अनुमान बनाने के लिए का इस्तेमाल किया जा सकता है , अर्थात् कुछ उपयुक्त कारक के साथ , हालाँकि इस मामले में हम यह जानते हैं इसलिए यह निर्माण कोई सार्थक ज्ञान नहीं जोड़ता है, लेकिन यह ध्यान देने योग्य है कि यह पूर्वाग्रह का सही अनुमान देता है (जो शून्य है)।

जैकनाइफ के प्रसरण के अनुमान की गणना जैकनाइफ प्रतिकृति के प्रसरण से की जा सकती है: [3][4]

बाईं ओर की समानता अनुमानक को परिभाषित करती है, और सही समानता एक पहचान है जिसे सीधे सत्यापित किया जा सकता है। फिर उम्मीदें लेकर हम मिलते हैं , इसलिए यह विचरण का एक निष्पक्ष अनुमानक है .

आकलनकर्ता के पूर्वाग्रह का अनुमान लगाना

जैकनाइफ तकनीक का उपयोग संपूर्ण प्रतिरूप पर गणना किए गए अनुमानक के पूर्वाग्रह का अनुमान लगाने (और सही करने) के लिए किया जा सकता है।

मान लीजिए ब्याज का लक्ष्य मापदण्ड है, जिसे के वितरण की कुछ कार्यात्मकता माना जाता है। अवलोकनों के एक सीमित समुच्चय पर आधारित , जिसमें आई.आई.डी. सम्मिलित माना जाता है। की प्रतियाँ,अनुमानक का निर्माण किया गया है:

का मान प्रतिरूप-निर्भर है, इसलिए यह मान एक यादृच्छिक प्रतिरूप से अन्य यादृच्छिक प्रतिरूप में बदल जाएगा।

परिभाषा के अनुसार, का पूर्वाग्रह इस प्रकार है:

कोई व्यक्ति अनेक प्रतिरूपों से के अनेक मानों की गणना करना चाह सकता है, अनेक प्रतिरूपों से, और उनका औसत निकालें , लेकिन यह तब असंभव है जब उपलब्ध अवलोकनों के पूरे समुच्चयमें कोई अन्य प्रतिरूपन हों गणना करने के लिए प्रयोग किया जाता था . इस तरह की स्थिति में जैकनाइफ रीसैंपलिंग तकनीक मददगार हो सकती है।

हम जैकनाइफ प्रतिकृति का निर्माण करते हैं:

जहां प्रत्येक प्रतिकृति जैकनाइफ उपप्रतिदर्श के आधार पर एक लीव-वन-आउट अनुमान है, जिसमें आंकड़े बिंदुओं में से एक को छोड़कर सभी सम्मिलित हैं:

फिर हम उनका औसत परिभाषित करते हैं:

जैकनाइफ़ के पूर्वाग्रह का अनुमान द्वारा दिया गया है:

और परिणामी पूर्वाग्रह-सुधारित जैकनाइफ़ अनुमान द्वारा दिया गया है:

यह उस विशेष मामले में पूर्वाग्रह को हटा देता है जिसमें पूर्वाग्रह है, और अन्य मामलों में इसे घटाकर कर देता है। [2]

एक अनुमानक के विचरण का अनुमान लगाना

जैकनाइफ तकनीक का उपयोग संपूर्ण प्रतिरूप पर गणना किए गए अनुमानक के विचरण का अनुमान लगाने के लिए भी किया जा सकता है।

यह भी देखें

साहित्य

टिप्पणियाँ

  1. Efron 1982, p. 2.
  2. 2.0 2.1 2.2 Cameron & Trivedi 2005, p. 375.
  3. Efron 1982, p. 14.
  4. McIntosh, Avery I. "जैकनाइफ़ आकलन विधि" (PDF). Boston University. Avery I. McIntosh. Archived from the original (PDF) on 2016-05-14. Retrieved 2016-04-30.: p. 3.


संदर्भ