मूल-माध्य-वर्ग विचलन: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (6 revisions imported from alpha:मूल-माध्य-वर्ग_विचलन) |
(No difference)
|
Revision as of 12:41, 10 August 2023
Statistics |
---|
मूल-माध्य-वर्ग विचलन (आरएमएसडी) या मूल-माध्य-वर्ग त्रुटि (आरएमएसई) मॉडल या अनुमानक द्वारा अनुमानित मान (प्रतिरूप या जनसंख्या मूल्यों) और देखे गए मान के मध्य अंतर का अधिकांशतः उपयोग किया जाने वाला माप है। आरएमएसडी अनुमानित मान और देखे गए मान या इन अंतरों के द्विघात माध्य के मध्य अंतर के दूसरे सैंपल मोवमेंट के वर्गमूल का प्रतिनिधित्व करता है। इन सांख्यिकीय विचलन को आंकड़ों में त्रुटियां और अवशेष कहा जाता है, जब गणना डेटा प्रतिरूप पर की जाती है जिसका उपयोग अनुमान के लिए किया गया था और जब प्रतिरूप से बाहर गणना की जाती है तो इन्हें त्रुटियां (या पूर्वानुमान त्रुटियां) कहा जाता है। आरएमएसडी विभिन्न डेटा बिंदुओं के लिए पूर्वानुमानों में त्रुटियों के परिमाण को पूर्वानुमानित शक्ति के ही माप में एकत्रित करने का कार्य करता है। आरएमएसडी किसी विशेष डेटासेट के लिए विभिन्न मॉडलों की पूर्वानुमान त्रुटियों की तुलना करने के लिए स्पष्टता और परिशुद्धता का माप है, न कि डेटासेट के मध्य, क्योंकि यह स्केल-निर्भर रहता है। [1]
आरएमएसडी सदैव गैर-ऋणात्मक होता है, और 0 का मान (व्यवहार में लगभग कभी प्राप्त नहीं किया गया) हैं यह डेटा के लिए एकदम फिट होने का संकेत देता हैं। सामान्यतः, कम आरएमएसडी उच्चतर से उत्तम होता है। चूँकि विभिन्न प्रकार के डेटा की तुलना अमान्य होगी क्योंकि माप उपयोग की गई संख्याओं के मापदंड पर निर्भर होता है।
आरएमएसडी वर्ग त्रुटियों के औसत का वर्गमूल है। आरएमएसडी पर प्रत्येक त्रुटि का प्रभाव वर्ग त्रुटि के आकार के समानुपाती होता है | इस प्रकार बड़ी त्रुटियों का आरएमएसडी पर असंगत रूप से बड़ा प्रभाव पड़ता है। ऐसे परिणाम के रूप में, आरएमएसडी आउटलेर्स के प्रति संवेदनशील होता है। [2][3]
सूत्र
अनुमानित पैरामीटर के संबंध में अनुमानक के आरएमएसडी को माध्य वर्ग त्रुटि के वर्गमूल के रूप में परिभाषित किया गया है
निष्पक्ष अनुमानक के लिए, आरएमएसडी विचरण का वर्गमूल है, जिसे मानक विचलन के रूप में जाना जाता है।
प्रतिगमन के आश्रित वेरिएबल के समय t के लिए अनुमानित मान का आरएमएसडी, T समय पर देखे गए वेरिएबल के साथ, T के विभिन्न पूर्वानुमानों के लिए विचलन के वर्गों के माध्य के वर्गमूल के रूप में गणना की जाती है
(क्रास सेक्शनल डाटा पर प्रतिगमन के लिए, सबस्क्रिप्ट t को i द्वारा प्रतिस्थापित किया जाता है और T को n द्वारा प्रतिस्थापित किया जाता है।)
कुछ विषयों में, आरएमएसडी का उपयोग दो वस्तुओं के मध्य अंतर की तुलना करने के लिए किया जाता है जो भिन्न हो सकते हैं, जिनमें से किसी को भी मानक के रूप में स्वीकार नहीं किया जाता है। उदाहरण के लिए, दो समय श्रृंखलाओं के मध्य औसत अंतर को मापते समय और ,सूत्र बन जाता है
सामान्यीकरण
आरएमएसडी को सामान्य करने से विभिन्न मापदंडों वाले डेटासेट या मॉडल के मध्य तुलना की सुविधा मिलती है। यद्यपि साहित्य में सामान्यीकरण का कोई सुसंगत साधन नहीं है, सामान्य विकल्प मापे गए डेटा के माध्य या सीमा (अधिकतम मान शून्य से न्यूनतम मान के रूप में परिभाषित) होती हैं |[4]
- या .
इस मान को सामान्यतः सामान्यीकृत मूल-माध्य-वर्ग विचलन या त्रुटि (एनआरएमएसडी या एनआरएमएसई) के रूप में जाना जाता है, और अधिकांशतः इसे प्रतिशत के रूप में व्यक्त किया जाता है, जहां यह कम मान कम अवशिष्ट विचरण का संकेत देते हैं। इसे भिन्नता गुणांक या 'प्रतिशत आरएमएस' भी कहा जाता है। यह अनेक स्तिथियों में, विशेष रूप से लघु प्रतिरूपों के लिए हैं, प्रतिरूप सीमा का प्रतिरूप के आकार से प्रभावित होने की संभावना होती है जो तुलना में बाधा उत्पन्न करती हैं।
आरएमएसडी को अधिक उपयोगी तुलना उपाय बनाने की अन्य संभावित विधि आरएमएसडी को अन्तःचतुर्थक श्रेणी द्वारा विभाजित करना है। आरएमएसडी को आईक्यूआर के साथ विभाजित करते समय सामान्यीकृत मान लक्ष्य वेरिएबल में चरम मान के लिए कम संवेदनशील हो जाता है।
- कहाँ
और के साथ जहां CDF−1 क्वांटाइल फलन है।
माप के औसत मान द्वारा सामान्यीकरण करते समय, अस्पष्टता से बचने के लिए आरएमएसडी, सीवी (आरएमएसडी) की भिन्नता के गुणांक शब्द का उपयोग किया जा सकता है।[5] यह मानक विचलन की जगह लेने वाले आरएमएसडी के साथ भिन्नता के गुणांक के अनुरूप होता है।
माध्य पूर्ण त्रुटि
कुछ शोधकर्ताओं ने मूल माध्य वर्ग विचलन के अतिरिक्त माध्य निरपेक्ष त्रुटि (एमएई) के उपयोग का पक्षसमर्थन करता है। आरएमएसडी की तुलना में व्याख्यात्मकता में एमएई को लाभ होता है। एमएई त्रुटियों के निरपेक्ष मान का औसत है। वर्ग त्रुटियों के औसत के वर्गमूल की तुलना में एमएई को समझना मौलिक रूप से सरल है। इसके अतिरिक्त, प्रत्येक त्रुटि के पूर्ण मान के सीधे अनुपात में एमएई को प्रभावित करती है, जो आरएमएसडी के स्तिथियां में नहीं है।[2]
अनुप्रयोग
- मौसम विज्ञान में, यह देखना कि गणित का मॉडल वायुमंडल के व्यवहार का कितना प्रभावी पूर्वानुमान करता है।
- जैव सूचना विज्ञान में, परमाणु स्थितियों का मूल-माध्य-वर्ग विचलन प्रोटीन संरचनात्मक संरेखण प्रोटीन के परमाणुओं के मध्य औसत दूरी का माप होता है।
- स्ट्रक्चर बेस्ड ड्रग डिज़ाइन में, आरएमएसडी लिगैंड संरचना के क्रिस्टल संरचना और डॉकिंग (आण्विक) पूर्वानुमान के मध्य अंतर का माप है।
- अर्थशास्त्र में, आरएमएसडी का उपयोग यह निर्धारित करने के लिए किया जाता है कि कोई आर्थिक मॉडल आर्थिक संकेतकों पर फिट बैठता है या नहीं। कुछ विशेषज्ञों ने तर्क दिया है कि आरएमएसडी रिलेटिव एब्सोल्यूट एरर की तुलना में यह कम विश्वसनीय है।[6]
- प्रायोगिक मनोविज्ञान में, आरएमएसडी का उपयोग यह आकलन करने के लिए किया जाता है कि व्यवहार के गणितीय या कम्प्यूटेशनल मॉडल अनुभवजन्य रूप से देखे गए व्यवहार को कितनी अच्छी तरह समझाते हैं।
- जीआईएस में, आरएमएसडी उपाय है जिसका उपयोग स्थानिक विश्लेषण और रिमोट सेंसिंग की स्पष्टता का आकलन करने के लिए किया जाता है।
- हाइड्रोज्योलोजी में, आरएमएसडी और एनआरएमएसडी का उपयोग भूजल मॉडल के अंशांकन का मूल्यांकन करने के लिए किया जाता है।[7]
- इमेजिंग विज्ञान में, आरएमएसडी पीक सिग्नल-टू-नोइस रेटियों का भाग है, ऐसा उपाय जिसका उपयोग यह आकलन करने के लिए किया जाता है कि किसी छवि को फिर से बनाने की विधि मूल छवि के सापेक्ष कितना अच्छा प्रदर्शन करती है।
- कम्प्यूटेशनल न्यूरोसाइंस में, आरएमएसडी का उपयोग यह आकलन करने के लिए किया जाता है कि कोई सिस्टम किसी दिए गए मॉडल को कितनी अच्छी तरह सीखता है।[8]
- प्रोटीन न्यूकिलियर मैग्नेटिक रेसोनॅन्स स्पेक्ट्रोस्कोपी में, आरएमएसडी का उपयोग संरचनाओं के प्राप्त बंडल की गुणवत्ता का अनुमान लगाने के लिए उपाय के रूप में किया जाता है।
- नेटफ्लिक्स प्राइज के लिए प्रस्तुतियों का मूल्यांकन परीक्षण डेटासेट के अज्ञात वास्तविक मान से आरएमएसडी का उपयोग करके किया गया था।
- भवनों की ऊर्जा खपत के अनुकरण में, आरएमएसई और सीवी (आरएमएसई) का उपयोग भवन के प्रदर्शन को मापने के लिए मॉडल को कैलिब्रेट करने के लिए किया जाता है।[9]
- एक्स - रे क्रिस्टलोग्राफी में, आरएमएसडी (और आरएमएसजेड) का उपयोग आणविक आंतरिक निर्देशांक के विचलन को मापने के लिए किया जाता है जो कि पुस्तकालय मान से विचलित होता है।
- नियंत्रण सिद्धांत में, आरएमएसई का उपयोग स्टेट ऑब्ज़र्वर के प्रदर्शन का मूल्यांकन करने के लिए गुणवत्ता उपाय के रूप में किया जाता है।[10]
- द्रव गतिशीलता में, सामान्यीकृत मूल-माध्य-वर्ग विचलन (एनआरएमएसडी), भिन्नता का गुणांक (सीवी), और प्रतिशत आरएमएस का उपयोग फ्लो व्यवहार की एकरूपता जैसे वेग प्रोफ़ाइल, तापमान वितरण, या गैस प्रजाति एकाग्रता को मापने के लिए किया जाता है। फ्लो और थर्मल उपकरण और प्रक्रियाओं के डिजाइन को अनुकूलित करने के लिए मान की तुलना उद्योग मानकों से की जाती है।
यह भी देखें
- वर्गमूल औसत का वर्ग
- अर्थ पूर्ण त्रुटि
- औसत निरपेक्ष विचलन
- माध्य हस्ताक्षरित विचलन
- माध्य वर्ग विचलन
- वर्ग विचलन
- आंकड़ों में त्रुटियाँ और अवशेष
- गुणांक का परिवर्तन
संदर्भ
- ↑ Hyndman, Rob J.; Koehler, Anne B. (2006). "पूर्वानुमान सटीकता के उपायों पर एक और नज़र". International Journal of Forecasting. 22 (4): 679–688. CiteSeerX 10.1.1.154.9771. doi:10.1016/j.ijforecast.2006.03.001.
- ↑ 2.0 2.1 Pontius, Robert; Thontteh, Olufunmilayo; Chen, Hao (2008). "वास्तविक चर साझा करने वाले मानचित्रों के बीच एकाधिक रिज़ॉल्यूशन तुलना के लिए जानकारी के घटक". Environmental Ecological Statistics. 15 (2): 111–142. doi:10.1007/s10651-007-0043-y.
- ↑ Willmott, Cort; Matsuura, Kenji (2006). "स्थानिक प्रक्षेपकों के प्रदर्शन का मूल्यांकन करने के लिए त्रुटि के आयामी मापों के उपयोग पर". International Journal of Geographical Information Science. 20: 89–102. doi:10.1080/13658810500286976.
- ↑ "तटीय इनलेट्स अनुसंधान कार्यक्रम (सीआईआरपी) विकी - सांख्यिकी". Retrieved 4 February 2015.
- ↑ "FAQ: What is the coefficient of variation?". Retrieved 19 February 2019.
- ↑ Armstrong, J. Scott; Collopy, Fred (1992). "Error Measures For Generalizing About Forecasting Methods: Empirical Comparisons" (PDF). International Journal of Forecasting. 8 (1): 69–80. CiteSeerX 10.1.1.423.508. doi:10.1016/0169-2070(92)90008-w.
- ↑ Anderson, M.P.; Woessner, W.W. (1992). Applied Groundwater Modeling: Simulation of Flow and Advective Transport (2nd ed.). Academic Press.
- ↑ Ensemble Neural Network Model
- ↑ ANSI/BPI-2400-S-2012: Standard Practice for Standardized Qualification of Whole-House Energy Savings Predictions by Calibration to Energy Use History
- ↑ https://kalman-filter.com/root-mean-square-error