श्रृंखला बहुखंड: Difference between revisions

From Vigyanwiki
No edit summary
Line 15: Line 15:


: <math>\sum_{m=0}^\infty a_{qm+p}\cdot z^{qm+p} = \frac{1}{q}\cdot \sum_{k=0}^{q-1} \omega^{-kp}\cdot f(\omega^k\cdot z),</math>
: <math>\sum_{m=0}^\infty a_{qm+p}\cdot z^{qm+p} = \frac{1}{q}\cdot \sum_{k=0}^{q-1} \omega^{-kp}\cdot f(\omega^k\cdot z),</math>
जहाँ <math>\omega = e^{\frac{2\pi i}{q}}</math> इकाई का एक अभाज्य q-वाँ मूल होता है। इस अभिव्यक्ति को अधिकांशतः इकाई फ़िल्टर की जड़ कहा जाता है। इस समाधान की खोज सबसे पहले [[थॉमस सिम्पसन]] ने की थी।<ref>{{cite journal |last1=Simpson |first1=Thomas |date=1757 |title=CIII. The invention of a general method for determining the sum of every 2d, 3d, 4th, or 5th, &c. term of a series, taken in order; the sum of the whole series being known |journal=Philosophical Transactions of the Royal Society of London |volume=51 |pages=757–759 |doi=10.1098/rstl.1757.0104|doi-access=free }}</ref> यह अभिव्यक्ति विशेष रूप से उपयोगी है क्योंकि यह एक अनंत योग को एक सीमित योग में परिवर्तित कर सकती है। इसका उपयोग, उदाहरण के लिए, गॉस के डिगामा प्रमेय के मानक प्रमाण के एक महत्वपूर्ण चरण में किया जाता है, जो तर्कसंगत मान पी/क्यू पर मूल्यांकन किए गए डिगामा फलन का एक संवृत रूप समाधान देता है।
जहाँ <math>\omega = e^{\frac{2\pi i}{q}}</math> इकाई का एक अभाज्य q-वाँ मूल होता है। इस अभिव्यक्ति को अधिकांशतः इकाई फ़िल्टर की जड़ कहा जाता है। इस विलयन की खोज सबसे पहले [[थॉमस सिम्पसन]] ने की थी।<ref>{{cite journal |last1=Simpson |first1=Thomas |date=1757 |title=CIII. The invention of a general method for determining the sum of every 2d, 3d, 4th, or 5th, &c. term of a series, taken in order; the sum of the whole series being known |journal=Philosophical Transactions of the Royal Society of London |volume=51 |pages=757–759 |doi=10.1098/rstl.1757.0104|doi-access=free }}</ref> यह अभिव्यक्ति विशेष रूप से उपयोगी है क्योंकि यह एक अनंत योग को एक सीमित योग में परिवर्तित कर सकती है। इसका उपयोग, उदाहरण के लिए, गॉस के डिगामा प्रमेय के मानक प्रमाण के एक महत्वपूर्ण चरण में किया जाता है, जो तर्कसंगत मान पी/क्यू पर मूल्यांकन किए गए डिगामा फलन का एक संवृत रूप विलयन  देता है।


== उदाहरण ==
== उदाहरण ==
Line 46: Line 46:


: <math>\sum_{m=0}^\infty {z^{qm+p} \over (qm+p)!} = \frac{1}{q}\cdot \sum_{k=0}^{q-1} e^{z\cos(2\pi k/q)}\cos{\left(z\sin{\left(\frac{2\pi k}{q}\right)}-\frac{2\pi kp}{q}\right)}.</math>
: <math>\sum_{m=0}^\infty {z^{qm+p} \over (qm+p)!} = \frac{1}{q}\cdot \sum_{k=0}^{q-1} e^{z\cos(2\pi k/q)}\cos{\left(z\sin{\left(\frac{2\pi k}{q}\right)}-\frac{2\pi kp}{q}\right)}.</math>
इन्हें रैखिक अवकल समीकरण के समाधान के रूप में देखा जा सकता है <math>f^{(q)}(z)=f(z)</math> सीमा शर्तों के साथ <math>f^{(k)}(0)=\delta_{k,p}</math>, [[क्रोनकर डेल्टा]] नोटेशन का उपयोग करते हुए। विशेष रूप से, त्रिखंड हैं
इन्हें रैखिक अवकल समीकरण के विलयन  के रूप में देखा जा सकता है <math>f^{(q)}(z)=f(z)</math> सीमा शर्तों के साथ <math>f^{(k)}(0)=\delta_{k,p}</math>, [[क्रोनकर डेल्टा]] नोटेशन का उपयोग करते हुए। विशेष रूप से, त्रिखंड हैं


: <math>\sum_{m=0}^\infty {z^{3m} \over (3m)!} = \frac{1}{3}\left(e^z+2e^{-z/2}\cos{\frac{\sqrt{3}z}{2}}\right)</math>
: <math>\sum_{m=0}^\infty {z^{3m} \over (3m)!} = \frac{1}{3}\left(e^z+2e^{-z/2}\cos{\frac{\sqrt{3}z}{2}}\right)</math>

Revision as of 00:59, 22 July 2023

गणित में, घात श्रृंखला बहुखंड एक नई घात श्रृंखला है जो मूल श्रृंखला से अपरिवर्तित रूप से निकाले गए समान दूरी वाले शब्दों से बनी होती है। औपचारिक रूप से, यदि किसी को एक घात श्रृंखला दी गई है

तो इसका बहुखंड रूप की एक घात श्रृंखला है

जहाँ p, q पूर्णांक हैं, 0 ≤ p < q के साथ होते है। श्रृंखला बहुखंड जनक फलन के सामान्य परिवर्तनों में से एक का प्रतिनिधित्व करता है।

विश्लेषणात्मक फलन का बहुखंड

एक विश्लेषणात्मक फलन की श्रृंखला का एक बहुखंड

फलन के संदर्भ में एक संवृत रूप अभिव्यक्ति होती है :

जहाँ इकाई का एक अभाज्य q-वाँ मूल होता है। इस अभिव्यक्ति को अधिकांशतः इकाई फ़िल्टर की जड़ कहा जाता है। इस विलयन की खोज सबसे पहले थॉमस सिम्पसन ने की थी।[1] यह अभिव्यक्ति विशेष रूप से उपयोगी है क्योंकि यह एक अनंत योग को एक सीमित योग में परिवर्तित कर सकती है। इसका उपयोग, उदाहरण के लिए, गॉस के डिगामा प्रमेय के मानक प्रमाण के एक महत्वपूर्ण चरण में किया जाता है, जो तर्कसंगत मान पी/क्यू पर मूल्यांकन किए गए डिगामा फलन का एक संवृत रूप विलयन देता है।

उदाहरण

द्विभाजन

सामान्यतः, किसी श्रृंखला के द्विभाजन श्रृंखला के सम और विषम कार्य भाग होते हैं।

ज्यामितीय श्रृंखला

ज्यामितीय श्रृंखला पर विचार करें

व्यवस्थित करके उपरोक्त शृंखला में इसके बहुखण्ड आसानी से देखे जा सकते हैं

यह याद रखते हुए कि बहुखंडों का योग मूल श्रृंखला के बराबर होना चाहिए, हम परिचित पहचान को पुनः प्राप्त करते हैं

घातांकीय फलन

घातांकीय फलन

उपरोक्त सूत्र के माध्यम से विश्लेषणात्मक फलन को अलग किया जाता है

द्विभाजन तुच्छ रूप से अतिशयोक्तिपूर्ण कार्य हैं:

उच्च क्रम के बहुखंड इस बात पर ध्यान देकर पाए जाते हैं कि ऐसी सभी श्रृंखलाओं को वास्तविक रेखा के साथ वास्तविक-मूल्यवान होना चाहिए। वास्तविक भाग लेकर और मानक त्रिकोणमितीय पहचानों का उपयोग करके, सूत्रों को स्पष्ट रूप से वास्तविक रूप में लिखा जा सकता है

इन्हें रैखिक अवकल समीकरण के विलयन के रूप में देखा जा सकता है सीमा शर्तों के साथ , क्रोनकर डेल्टा नोटेशन का उपयोग करते हुए। विशेष रूप से, त्रिखंड हैं

और चतुर्खंड हैं

द्विपद शृंखला

द्विपद विस्तार का बहुखंड

x = 1 पर चरण q के साथ द्विपद गुणांकों के योग के लिए निम्नलिखित पहचान मिलती है:

संदर्भ

  1. Simpson, Thomas (1757). "CIII. The invention of a general method for determining the sum of every 2d, 3d, 4th, or 5th, &c. term of a series, taken in order; the sum of the whole series being known". Philosophical Transactions of the Royal Society of London. 51: 757–759. doi:10.1098/rstl.1757.0104.