सामान्यीकृत संख्या: Difference between revisions

From Vigyanwiki
(No difference)

Revision as of 13:04, 10 August 2023

विज्ञानिक गणित में, कोई संख्या तब सामान्य हो जाती है जब उसे दशमलव बिंदु से पहले एक गैर-शून्य दशमलव अंक के साथ वैज्ञानिक संकेतन में लिखा जाता है।[1] इस प्रकार, एक जब सामान्यीकृत वैज्ञानिक संकेतन में लिखी जाती है, तो इस प्रकार होती है:

जहाँ n एक पूर्णांक है, आधार 10 में संख्या के संख्यात्मक अंक हैं, और शून्य नहीं है ,अर्थात्, इसका अग्रणी अंक (अर्थात सबसे बायां) शून्य नहीं है और इसके पश्चात दशमलव बिंदु आता है। सीधे शब्दों में कहें तो कोई संख्या तब सामान्य हो जाती है जब उसे a× 10n के रूप में लिखा जाता है जहां 1 ≤ a <10 बिना किसी अग्र शून्य के यह वैज्ञानिक संकेतन का मानक रूप माना जाता है। एक वैकल्पिक शैली में, दशमलव बिंदु के उपरांत पहला गैर-शून्य अंक रखना होता है।

उदाहरण

उदाहरण के तौर पर, सामान्यीकृत रूप में संख्या 918.082 होती है

जबकि संख्या −0.00574012 सामान्यीकृत रूप में होती है

स्पष्टतः, किसी भी गैर-शून्य वास्तविक संख्या को सामान्यीकृत किया जा सकता है।

अन्य आधार

यदि संख्या दशमलवीय (अर्थात गणना का आधार) 10 के अतिरिक्त किसी अन्य अंकण में प्रतिनिधित की जाती है, तो उसी परिभाषा को लागू किया जाता है।

अगर आधार b में एक सामान्यीकृत संख्या है, तो उसका रूप होगा:

पुनः जहाँ और अंक, के मध्य और पूर्णांक हैं


कई संगणक प्रणालियों में, बाइनरी फ़्लोटिंग-बिंदु संख्याओं अपने प्रतिनिधिता के लिए इस सामान्यीकृत किए गए रूप का उपयोग करके आंतरिक रूप से प्रतिनिधित की जाती हैं; विवरण के लिए, " सामान्य संख्या (कंप्यूटिंग)" देखें। यद्यपि बिंदु को "फ्लोटिंग" के रूप में वर्णित किया जाता है, एक सामान्यीकृत किया गया फ्लोटिंग-प्वाइंट संख्या के लिए इसकी स्थिति स्थायी होती है, परिवर्तन को प्रतिबिंबित किया जाता है जो विभिन्न घातांतरों के विभिन्न मानों में प्रतिदर्शित होता है।

यह भी देखें

संदर्भ

  1. Fleisch, Daniel; Kregenow, Julia (2013), A Student's Guide to the Mathematics of Astronomy, Cambridge University Press, p. 35, Bibcode:2013sgma.book.....F, ISBN 9781107292550.