चैनल लंबाई मॉड्यूलेशन: Difference between revisions
No edit summary |
No edit summary |
||
Line 27: | Line 27: | ||
&= \frac{V_\text{E} L/{\Delta L} + V_\text{DS}}{I_\text{D}} | &= \frac{V_\text{E} L/{\Delta L} + V_\text{DS}}{I_\text{D}} | ||
\end{align}</math> | \end{align}</math> | ||
जहाँ <math>V_\text{DS}</math> = ड्रेन-टू-सोर्स वोल्टेज, <math>I_\text{D}</math> = ड्रेन धारा और <math>\lambda</math> = चैनल-लंबाई मॉड्यूलेशन पैरामीटर | जहाँ <math>V_\text{DS}</math> = ड्रेन-टू-सोर्स वोल्टेज, <math>I_\text{D}</math> = ड्रेन धारा और <math>\lambda</math> = चैनल-लंबाई मॉड्यूलेशन पैरामीटर है। चैनल-लंबाई मॉड्यूलेशन (λ = 0 के लिए) के बिना, आउटपुट प्रतिरोध अनंत है। चैनल-लंबाई मॉड्यूलेशन पैरामीटर को सामान्यतः मॉसफेट चैनल लंबाई L के व्युत्क्रमानुपाती माना जाता है, जैसा कि r<sub>O</sub> के लिए ऊपर दिए गए अंतिम रूप में दिखाया गया है।<ref name=Sansen>{{Cite book | ||
| author=W. M. C. Sansen | | author=W. M. C. Sansen | ||
| title=Analog Design Essentials | | title=Analog Design Essentials | ||
Line 42: | Line 42: | ||
::<math>\lambda \approx \frac{\Delta L}{V_EL}</math>, | ::<math>\lambda \approx \frac{\Delta L}{V_EL}</math>, | ||
जहां | जहां V<sub><u>''E''</u></sub> उपयुक्त पैरामीटर है, चूँकि यह BJTs के लिए प्रारंभिक प्रभाव की अवधारणा के समान है। [[65nm]] प्रक्रिया के लिए, लगभग V<sub>E</sub> ≈ 4 V/μm होता है।<ref name=Sansen/>(ईकेवी मॉडल में अधिक विस्तृत पद्धति का उपयोग किया जाता है।<ref name=Fjeldly> | ||
{{Cite book | {{Cite book | ||
|author1=Trond Ytterdal |author2=Yuhua Cheng |author3=Tor A. Fjeldly |title=Device Modeling for Analog and RF CMOS Circuit Design | |author1=Trond Ytterdal |author2=Yuhua Cheng |author3=Tor A. Fjeldly |title=Device Modeling for Analog and RF CMOS Circuit Design | ||
Line 51: | Line 51: | ||
|isbn=0-471-49869-6 | |isbn=0-471-49869-6 | ||
|url=https://books.google.com/books?id=aMUBiiFJYtQC&pg=PA212 | |url=https://books.google.com/books?id=aMUBiiFJYtQC&pg=PA212 | ||
}}</ref>) | }}</ref>)। चूँकि, λ के लिए आज तक उपयोग किया गया कोई भी सरल सूत्र r<sub>O</sub> की त्रुटिहीन लंबाई या वोल्टेज निर्भरता प्रदान नहीं करता है, जिससे कंप्यूटर मॉडल के उपयोग को विवश किया जाता है, जैसा कि आगे संक्षेप में चर्चा की गई है। | ||
मॉसफेट आउटपुट प्रतिरोध पर चैनल-लंबाई मॉड्यूलेशन का प्रभाव उपकरण, विशेष रूप से इसकी चैनल लंबाई और लागू पूर्वाग्रह दोनों के साथ भिन्न होता है। लंबे MOSFETs में आउटपुट प्रतिरोध को प्रभावित करने वाला मुख्य कारक चैनल लंबाई मॉड्यूलेशन है जैसा कि अभी बताया गया है। छोटे एमओएसएफईटी में अतिरिक्त कारक उत्पन्न होते हैं जैसे: डीआईबीएल | ड्रेन-प्रेरित बाधा कम करना (जो थ्रेसहोल्ड वोल्टेज को कम करता है, धारा में वृद्धि करता है और आउटपुट प्रतिरोध को कम करता है), [[वेग संतृप्ति]] (जो ड्रेन वोल्टेज के साथ चैनल धारा में वृद्धि को सीमित करता है, जिससे आउटपुट प्रतिरोध को बढ़ाना) और [[ बैलिस्टिक परिवहन ]] (जो ड्रेन द्वारा धारा के संग्रह को संशोधित करता है, और डीआईबीएल को संशोधित करता है। ड्रेन-प्रेरित बाधा को कम करता है ताकि पिंच-ऑफ क्षेत्र में वाहक की आपूर्ति बढ़ सके, धारा बढ़ जाए और आउटपुट प्रतिरोध कम हो जाए) ). फिर, | मॉसफेट आउटपुट प्रतिरोध पर चैनल-लंबाई मॉड्यूलेशन का प्रभाव उपकरण, विशेष रूप से इसकी चैनल लंबाई और लागू पूर्वाग्रह दोनों के साथ भिन्न होता है। लंबे MOSFETs में आउटपुट प्रतिरोध को प्रभावित करने वाला मुख्य कारक चैनल लंबाई मॉड्यूलेशन है जैसा कि अभी बताया गया है। छोटे एमओएसएफईटी में अतिरिक्त कारक उत्पन्न होते हैं जैसे: डीआईबीएल | ड्रेन-प्रेरित बाधा कम करना (जो थ्रेसहोल्ड वोल्टेज को कम करता है, धारा में वृद्धि करता है और आउटपुट प्रतिरोध को कम करता है), [[वेग संतृप्ति]] (जो ड्रेन वोल्टेज के साथ चैनल धारा में वृद्धि को सीमित करता है, जिससे आउटपुट प्रतिरोध को बढ़ाना) और [[ बैलिस्टिक परिवहन ]] (जो ड्रेन द्वारा धारा के संग्रह को संशोधित करता है, और डीआईबीएल को संशोधित करता है। ड्रेन-प्रेरित बाधा को कम करता है ताकि पिंच-ऑफ क्षेत्र में वाहक की आपूर्ति बढ़ सके, धारा बढ़ जाए और आउटपुट प्रतिरोध कम हो जाए) ). फिर, त्रुटिहीन परिणामों के लिए SPICE#उपकरण मॉडल की आवश्यकता होती है। | ||
==सन्दर्भ और नोट्स== | ==सन्दर्भ और नोट्स== |
Revision as of 10:29, 10 August 2023
चैनल लंबाई मॉड्यूलेशन (सीएलएम) क्षेत्र प्रभाव ट्रांजिस्टर में एक प्रभाव है, जो बड़े ड्रेन पूर्वाग्रहों के लिए ड्रेन पूर्वाग्रह में वृद्धि के साथ विपरीत चैनल क्षेत्र की लंबाई को छोटा करता है। सीएलएम का परिणाम ड्रेन पूर्वाग्रह के साथ धारा में वृद्धि और आउटपुट प्रतिरोध में कमी है। यह मॉसफेट स्केलिंग में कई लघु-चैनल प्रभावों में से एक है। यह जेएफईटी एम्प्लीफायरों में भी विकृति उत्पन्न करता है।[1]
प्रभाव को समझने के लिए सबसे पहले चैनल के पिंच-ऑफ की धारणा प्रस्तुत की जाती है। चैनल का निर्माण वाहकों के गेट के प्रति आकर्षण से होता है, और चैनल के माध्यम से खींची गई धारा संतृप्ति मोड में ड्रेन वोल्टेज से लगभग एक स्थिर स्वतंत्र होती है। चूँकि, ड्रेन के पास, गेट और ड्रेन संयुक्त रूप से विद्युत क्षेत्र पैटर्न निर्धारित करते हैं। चैनल में बहने के अतिरिक्त, पिंच-ऑफ बिंदु से अधिक, वाहक उपसतह पैटर्न में प्रवाहित होते हैं, जो संभव हो जाता है क्योंकि ड्रेन और गेट दोनों धारा को नियंत्रित करते हैं। दाईं ओर की आकृति में, चैनल को डैश रेखा द्वारा दर्शाया गया है और जैसे-जैसे ड्रेन के निकट पहुंचता है, यह कमजोर होता जाता है, जिससे गठित व्युत्क्रम लेयर के अंत और ड्रेन ("पिंच-ऑफ" क्षेत्र) के बीच अपरिवर्तित सिलिकॉन का अंतर रह जाता है।
जैसे-जैसे ड्रेन वोल्टेज बढ़ता है, धारा पर इसका नियंत्रण स्रोत की ओर आगे बढ़ता है, इसलिए अपरिवर्तित क्षेत्र स्रोत की ओर फैलता है, जिससे चैनल क्षेत्र की लंबाई कम हो जाती है, इस प्रभाव को चैनल-लंबाई मॉड्यूलेशन कहा जाता है। क्योंकि प्रतिरोध लंबाई के समानुपाती होता है, चैनल को छोटा करने से इसका प्रतिरोध कम हो जाता है, जिससे संतृप्ति में काम कर रहे मॉसफेट के लिए ड्रेन पूर्वाग्रह में वृद्धि के साथ धारा में वृद्धि होती है। स्रोत-से-ड्रेन पृथक्करण जितना कम होगा, ड्रेन जंक्शन उतना गहरा होगा, और ऑक्साइड इन्सुलेटर जितना मोटा होगा प्रभाव अधिक स्पष्ट होगा।
कमजोर व्युत्क्रम क्षेत्र में, चैनल-लंबाई मॉड्यूलेशन के अनुरूप ड्रेन के प्रभाव से खराब उपकरण बंद व्यवहार होता है जिसे डीआईबीएल बाधा कम करने के रूप में जाना जाता है, जो थ्रेसहोल्ड वोल्टेज की ड्रेन प्रेरित कमी के रूप में जाना जाता है।
द्विध्रुवी जंक्शन ट्रांजिस्टर में, बेस-संकुचन के कारण बढ़े हुए कलेक्टर वोल्टेज के साथ धारा में समान वृद्धि देखी जाती है, जिसे प्रारंभिक प्रभाव के रूप में जाना जाता है। धारा पर प्रभाव की समानता के कारण MOSFETs के लिए "प्रारंभिक प्रभाव" शब्द का उपयोग "चैनल-लंबाई मॉड्यूलेशन" के वैकल्पिक नाम के रूप में भी किया गया है।
शिचमैन-हॉजेस मॉडल
पाठ्यपुस्तकों में, सक्रिय मोड में चैनल लंबाई मॉड्यूलेशन को सामान्यतः शिचमैन-हॉजेस मॉडल का उपयोग करके वर्णित किया जाता है, जो केवल पुरानी तकनीक के लिए त्रुटिहीन है:[2]
जहाँ = ड्रेन धारा, = प्रौद्योगिकी पैरामीटर को कभी-कभी ट्रांसकंडक्टेंस गुणांक, W, L = MOSFET चौड़ाई और लंबाई, = गेट-टू-सोर्स वोल्टेज, =थ्रेसहोल्ड वोल्टेज, = ड्रेन-टू-सोर्स वोल्टेज, , और λ = चैनल-लंबाई मॉड्यूलेशन पैरामीटर कहा जाता है।
क्लासिक शिचमैन-होजेस मॉडल में, उपकरण स्थिरांक है, जो लंबे चैनलों वाले ट्रांजिस्टर की वास्तविकता को दर्शाता है।
आउटपुट प्रतिरोध
चैनल-लंबाई मॉड्यूलेशन महत्वपूर्ण है क्योंकि यह मॉसफेट आउटपुट प्रतिरोध तय करता है, जो धारा मिरर और एम्पलीफायरों के सर्किट डिजाइन में महत्वपूर्ण पैरामीटर है।
ऊपर प्रयुक्त शिचमैन-होजेस मॉडल में, आउटपुट प्रतिरोध इस प्रकार दिया गया है:
जहाँ = ड्रेन-टू-सोर्स वोल्टेज, = ड्रेन धारा और = चैनल-लंबाई मॉड्यूलेशन पैरामीटर है। चैनल-लंबाई मॉड्यूलेशन (λ = 0 के लिए) के बिना, आउटपुट प्रतिरोध अनंत है। चैनल-लंबाई मॉड्यूलेशन पैरामीटर को सामान्यतः मॉसफेट चैनल लंबाई L के व्युत्क्रमानुपाती माना जाता है, जैसा कि rO के लिए ऊपर दिए गए अंतिम रूप में दिखाया गया है।[3]
- ,
जहां VE उपयुक्त पैरामीटर है, चूँकि यह BJTs के लिए प्रारंभिक प्रभाव की अवधारणा के समान है। 65nm प्रक्रिया के लिए, लगभग VE ≈ 4 V/μm होता है।[3](ईकेवी मॉडल में अधिक विस्तृत पद्धति का उपयोग किया जाता है।[4])। चूँकि, λ के लिए आज तक उपयोग किया गया कोई भी सरल सूत्र rO की त्रुटिहीन लंबाई या वोल्टेज निर्भरता प्रदान नहीं करता है, जिससे कंप्यूटर मॉडल के उपयोग को विवश किया जाता है, जैसा कि आगे संक्षेप में चर्चा की गई है।
मॉसफेट आउटपुट प्रतिरोध पर चैनल-लंबाई मॉड्यूलेशन का प्रभाव उपकरण, विशेष रूप से इसकी चैनल लंबाई और लागू पूर्वाग्रह दोनों के साथ भिन्न होता है। लंबे MOSFETs में आउटपुट प्रतिरोध को प्रभावित करने वाला मुख्य कारक चैनल लंबाई मॉड्यूलेशन है जैसा कि अभी बताया गया है। छोटे एमओएसएफईटी में अतिरिक्त कारक उत्पन्न होते हैं जैसे: डीआईबीएल | ड्रेन-प्रेरित बाधा कम करना (जो थ्रेसहोल्ड वोल्टेज को कम करता है, धारा में वृद्धि करता है और आउटपुट प्रतिरोध को कम करता है), वेग संतृप्ति (जो ड्रेन वोल्टेज के साथ चैनल धारा में वृद्धि को सीमित करता है, जिससे आउटपुट प्रतिरोध को बढ़ाना) और बैलिस्टिक परिवहन (जो ड्रेन द्वारा धारा के संग्रह को संशोधित करता है, और डीआईबीएल को संशोधित करता है। ड्रेन-प्रेरित बाधा को कम करता है ताकि पिंच-ऑफ क्षेत्र में वाहक की आपूर्ति बढ़ सके, धारा बढ़ जाए और आउटपुट प्रतिरोध कम हो जाए) ). फिर, त्रुटिहीन परिणामों के लिए SPICE#उपकरण मॉडल की आवश्यकता होती है।
सन्दर्भ और नोट्स
- ↑ "जेएफईटी इनपुट स्टेज सर्किट में विकृति". pmacura.cz. Archived from the original on 27 May 2021. Retrieved 2021-02-12.
- ↑ "NanoDotTek Report NDT14-08-2007, 12 August 2007" (PDF). NanoDotTek. Archived from the original (PDF) on 2012-06-17. Retrieved 23 March 2015.
- ↑ 3.0 3.1 W. M. C. Sansen (2006). Analog Design Essentials. Dordrecht: Springer. pp. §0124, p. 13. ISBN 0-387-25746-2. Archived from the original on 22 April 2009.
- ↑ Trond Ytterdal; Yuhua Cheng; Tor A. Fjeldly (2003). Device Modeling for Analog and RF CMOS Circuit Design. New York: Wiley. p. 212. ISBN 0-471-49869-6.
बाहरी संबंध
- What is channel length modulation? - OnMyPhD
- मॉसफेट Channel-Length Modulation - Tech brief
यह भी देखें
- सीमा वोल्टेज
- लघु चैनल प्रभाव
- डीआईबीएल|ड्रेन-प्रेरित अवरोध को कम करना
- मॉसफेट#संरचना और चैनल निर्माण
- हाइब्रिड-पीआई मॉडल
- ट्रांजिस्टर मॉडल
श्रेणी:इलेक्ट्रॉनिक डिज़ाइन
श्रेणी:एमओएसएफईटी