चतुष्फलकीय संख्या: Difference between revisions
m (7 revisions imported from alpha:चतुष्फलकीय_संख्या) |
No edit summary |
||
Line 94: | Line 94: | ||
{{Classes of natural numbers}} | {{Classes of natural numbers}} | ||
{{DEFAULTSORT:Tetrahedral Number}} | {{DEFAULTSORT:Tetrahedral Number}} | ||
[[Category:All accuracy disputes|Tetrahedral Number]] | |||
[[Category: | [[Category:Articles with disputed statements from September 2018|Tetrahedral Number]] | ||
[[Category:Created On 14/11/2022]] | [[Category:Articles with invalid date parameter in template|Tetrahedral Number]] | ||
[[Category: | [[Category:CS1 Deutsch-language sources (de)]] | ||
[[Category:CS1 errors]] | |||
[[Category:Created On 14/11/2022|Tetrahedral Number]] | |||
[[Category:Machine Translated Page|Tetrahedral Number]] | |||
[[Category:Pages with script errors]] | |||
[[Category:चित्र संख्या|Tetrahedral Number]] | |||
[[Category:सिंप्लेक्स नंबर|Tetrahedral Number]] |
Latest revision as of 14:44, 17 November 2022
चतुष्फलकीय संख्या, या त्रिकोणीय पिरामिड संख्या, एक आलंकारिक संख्या है जो एक त्रिकोणीय आधार और तीन पक्षों के साथ एक पिरामिड (ज्यामिति) का प्रतिनिधित्व करती है, जिसे टेट्राहेड्रोन कहा जाता है। n वें चतुष्फलकीय संख्या Ten, प्रथम n त्रिकोणीय संख्याओं का योग है, अर्थात,
चतुष्फलकीय संख्याएँ हैं:
सूत्र
चतुष्फलकीय संख्याओं को द्विपद गुणांक के रूप में भी दर्शाया जा सकता है:
इसलिए चतुष्फलकीय संख्याएं पास्कल के त्रिभुज में बाएं या दाएं से चौथे स्थान पर पाई जा सकती हैं ।
सूत्र के प्रमाण
यह प्रमाण इस तथ्य का उपयोग करता है कि n वें त्रिकोणीय संख्या द्वारा दिया गया है
यह गणितीय प्रेरण द्वारा आगे बढ़ता है।
- मुख्य मामला
आगमनात्मक कदम
सूत्र को गोस्पर के एल्गोरिथम द्वारा भी सिद्ध किया जा सकता है।
सामान्यीकरण
त्रिकोणीय संख्याओं और चतुष्फलकीय संख्याओं के लिए पाया गया पैटर्न सामान्यीकृत किया जा सकता है। यह सूत्र की ओर जाता है:[1]
ज्यामितीय व्याख्या
चतुष्फलकीय संख्याओं को गोले बनाकर प्रतिरूपित किया जा सकता है। उदाहरण के लिए, पाँचवीं चतुष्फलकीय संख्या (Te5 = 35) को 35 बिलियर्ड गेंदों और मानक त्रिकोणीय बिलियर्ड्स बॉल फ्रेम के साथ तैयार किया जा सकता है जिसमें 15 गेंदें होती हैं। फिर उनके ऊपर 10 और गेंदें रखी जाती हैं, फिर उनके ऊपर 6 और, फिर उनके ऊपर 3 और शीर्ष पर एक गेंद टेट्राहेड्रोन को पूरा करती है।
जब क्रम-n चतुष्फलक से निर्मित Ten गोले को एक इकाई के रूप में उपयोग किया जाता है, तो यह दिखाया जा सकता है कि ऐसी इकाइयों के साथ एक अंतरिक्ष टाइलिंग n ≤ 4 तक एक घने क्षेत्र पैकिंग प्राप्त कर सकता है ।[2][dubious ]
चतुष्फलकीय मूल और चतुष्फलकीय संख्याओं के लिए परीक्षण
x के घनमूल के अनुरूप, कोई भी x के (वास्तविक) चतुष्फलकीय मूल को संख्या n के रूप में परिभाषित कर सकता है जैसे कि Ten = x:
गुण
- Ten + Ten−1 = 12 + 22 + 32 .. + n2,वर्ग पिरामिड संख्याएँ।
- Te2n+1 = 12 + 32 .. + (2n+1)2, विषम वर्गों का योग।
- Te2n = 22 + 42 .. + (2n)2 , सम वर्गों का योग।
- ए.जे.मील ने 1878 में सिद्ध किया कि केवल तीन चतुष्फलकीय संख्याएँ भी पूर्ण वर्ग संख्याएँ हैं, अर्थात्:
- Te1 = 12 = 1
- Te2 = 22 = 4
- Te48 = 1402 = 19600.
- सर फ्रेडरिक पोलॉक, प्रथम बैरोनेट ने अनुमान लगाया कि प्रत्येक संख्या अधिकतम 5 चतुष्फलकीय संख्याओं का योग है: पोलक चतुष्फलकीय संख्या अनुमान देखें।
- एकमात्र चतुष्फलकीय संख्या जो एक वर्ग पिरामिड संख्या भी है 1 (बीयूकर्स, 1988), और एकमात्र चतुष्फलकीय संख्या जो एक पूर्ण घन भी है, 1 है।
- चतुष्फलकीय संख्याओं के व्युत्क्रम का अपरिमित योग 3/2 है, जिसे दूरबीन श्रृंखला का उपयोग करके प्राप्त किया जा सकता है:
- चतुष्फलकीय संख्याओं की समता (गणित) सम-विषम-सम-सम-सम-विषम दोहराव वाले पैटर्न का अनुसरण करती है।
- चतुष्फलकीय संख्याओं का अवलोकन:
- Te5 = Te4 + Te3 + Te2 + Te1
- जो संख्याएं त्रिकोणीय और चतुष्फलकीय दोनों हैं, उन्हें द्विपद गुणांक समीकरण को संतुष्ट करना चाहिए:
- केवल वही संख्याएँ जो चतुष्फलकीय और त्रिभुजाकार दोनों संख्याएँ हैं: (sequence A027568 in the OEIS):
- Te1 = T1 = 1
- Te3 = T4 = 10
- Te8 = T15 = 120
- Te20 = T55 = 1540
- Te34 = T119 = 7140
- Ten सभी उत्पादों p × q का योग है जहाँ (p, q) क्रमित जोड़े हैं और p + q = n + 1
- Ten, (n + 2)-बिट संख्याओं की संख्या है जिसमें उनके द्विआधारी विस्तार में 1 के दो रन होते हैं।
लोकप्रिय संस्कृति
कैरल के सभी 12 छंदों, क्रिसमस के बारह दिन (गीत) के दौरान मेरे सच्चे प्यार ने मुझे उपहारों की कुलTe12 = 364 संख्या भेजी है।[3] प्रत्येक पद के बाद उपहारों की संचयी कुल संख्या Ten है|
संभावित KeyForge तीन-घर संयोजनों की संख्या भी एक चतुष्फलकीय संख्या है, Ten−2 जहां पे n घरों की संख्या है।
यह भी देखें
- केंद्रित त्रिकोणीय संख्या
संदर्भ
- ↑ Baumann, Michael Heinrich (2018-12-12). "मरो [[:Template:गणित]]-dimensionale Champagnerpyramide" (PDF). Mathematische Semesterberichte (in Deutsch). 66: 89–100. doi:10.1007/s00591-018-00236-x. ISSN 1432-1815. S2CID 125426184.
{{cite journal}}
: URL–wikilink conflict (help) - ↑ "टेट्राहेड्रा". 21 May 2000. Archived from the original on 2000-05-21.
- ↑ Brent (2006-12-21). "क्रिसमस और टेट्राहेड्रल नंबर के बारह दिन". Mathlesstraveled.com. Retrieved 2017-02-28.