निष्क्रिय आव्यूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Matrix that, squared, equals itself}}
{{Short description|Matrix that, squared, equals itself}}
रैखिक बीजगणित में, निष्क्रिय आव्यूह ऐसा [[मैट्रिक्स (गणित)|आव्यूह]] होता है, जिसे जब स्वयं से गुणा किया जाता है, तो स्वयं ही परिणाम प्राप्त होता है।<ref>{{cite book |last=Chiang |first=Alpha C. |title=गणितीय अर्थशास्त्र की मौलिक विधियाँ|publisher=McGraw–Hill |edition=3rd |year=1984 |page=[https://archive.org/details/fundamentalmetho0000chia_b4p1/page/80 80] |location=New York |isbn=0070108137 |url=https://archive.org/details/fundamentalmetho0000chia_b4p1/page/80 }}</ref><ref name=Greene>{{cite book |last=Greene |first=William H. |title=अर्थमितीय विश्लेषण|publisher=Prentice–Hall |location=Upper Saddle River, NJ |edition=5th |year=2003 |pages=808–809 |isbn=0130661899 }}</ref> अर्थात आव्यूह <math>A</math> निष्क्रिय है यदि और केवल <math>A^2 = A</math> होता है। इस उत्पाद के लिए <math>A^2</math> को [[मैट्रिक्स गुणन|परिभाषित]] किया जाना है, <math>A</math> आवश्यक रूप से [[वर्ग मैट्रिक्स|वर्ग आव्यूह]] होना चाहिए। इस प्रकार से देखने पर, निष्क्रिय आव्यूह, [[मैट्रिक्स रिंग|आव्यूह वलय]] के [[निष्क्रिय तत्व (रिंग सिद्धांत)|निष्क्रिय तत्व]] हैं।
रैखिक बीजगणित में, निष्क्रिय आव्यूह ऐसा [[मैट्रिक्स (गणित)|आव्यूह]] होता है, जिसे जब स्वयं से गुणा किया जाता है, तो स्वयं ही परिणाम प्राप्त होता है।<ref>{{cite book |last=Chiang |first=Alpha C. |title=गणितीय अर्थशास्त्र की मौलिक विधियाँ|publisher=McGraw–Hill |edition=3rd |year=1984 |page=[https://archive.org/details/fundamentalmetho0000chia_b4p1/page/80 80] |location=New York |isbn=0070108137 |url=https://archive.org/details/fundamentalmetho0000chia_b4p1/page/80 }}</ref><ref name=Greene>{{cite book |last=Greene |first=William H. |title=अर्थमितीय विश्लेषण|publisher=Prentice–Hall |location=Upper Saddle River, NJ |edition=5th |year=2003 |pages=808–809 |isbn=0130661899 }}</ref> अर्थात आव्यूह <math>A</math> निष्क्रिय है यदि एवं केवल <math>A^2 = A</math> होता है। इस उत्पाद के लिए <math>A^2</math> को [[मैट्रिक्स गुणन|परिभाषित]] किया जाना है, <math>A</math> आवश्यक रूप से [[वर्ग मैट्रिक्स|वर्ग आव्यूह]] होना चाहिए। इस प्रकार से देखने पर, निष्क्रिय आव्यूह, [[मैट्रिक्स रिंग|आव्यूह वलय]] के [[निष्क्रिय तत्व (रिंग सिद्धांत)|निष्क्रिय तत्व]] हैं।


==उदाहरण==
==उदाहरण==
Line 34: Line 34:
* <math>b = ab + bd,</math> जिसका अर्थ <math>b(1 - a - d) = 0</math> इसलिए <math>b = 0</math> या <math>d = 1 - a</math> है।
* <math>b = ab + bd,</math> जिसका अर्थ <math>b(1 - a - d) = 0</math> इसलिए <math>b = 0</math> या <math>d = 1 - a</math> है।
* <math>c = ca + cd,</math> जिसका अर्थ <math>c(1 - a - d) = 0</math> इसलिए <math>c = 0</math> या <math>d = 1 - a</math> है।
* <math>c = ca + cd,</math> जिसका अर्थ <math>c(1 - a - d) = 0</math> इसलिए <math>c = 0</math> या <math>d = 1 - a</math> है।
* <math>d = bc + d^2.</math>
* <math>d = bc + d^2</math>
इस प्रकार, a के लिए आवश्यक नियम <math>2\times2</math> आव्यूह का निष्क्रिय होना यह है कि या तो यह [[विकर्ण मैट्रिक्स|विकर्ण आव्यूह]] है या इसका [[ट्रेस (रैखिक बीजगणित)|ट्रेस]] 1 के समान है। निष्क्रिय विकर्ण आव्यूह के लिए, <math>a</math> और <math>d</math> या तो 1 या 0 होना चाहिए।
इस प्रकार, a के लिए आवश्यक नियम <math>2\times2</math> आव्यूह का निष्क्रिय होना यह है कि या तो यह [[विकर्ण मैट्रिक्स|विकर्ण आव्यूह]] है या इसका [[ट्रेस (रैखिक बीजगणित)|अनुरेखण]] 1 के समान है। निष्क्रिय विकर्ण आव्यूह के लिए, <math>a</math> एवं <math>d</math> या तो 1 या 0 होना चाहिए।


यदि <math>b=c</math>, गणित का सवाल <math>\begin{pmatrix}a & b \\ b & 1 - a \end{pmatrix}</math> निष्क्रिय प्रदान किया जाएगा <math>a^2 + b^2 = a ,</math> अतः a [[द्विघात समीकरण]] को संतुष्ट करता है।
यदि <math>b=c</math>, गणित का सवाल <math>\begin{pmatrix}a & b \\ b & 1 - a \end{pmatrix}</math> निष्क्रिय प्रदान किया जाएगा <math>a^2 + b^2 = a ,</math> अतः a [[द्विघात समीकरण]] को संतुष्ट करता है।
:<math>a^2 - a + b^2 = 0 ,</math> या <math>\left(a - \frac{1}{2}\right)^2 + b^2 = \frac{1}{4}</math>
:<math>a^2 - a + b^2 = 0 ,</math> या <math>\left(a - \frac{1}{2}\right)^2 + b^2 = \frac{1}{4}</math>
जो केंद्र (1/2, 0) और त्रिज्या 1/2 वाला वृत्त है। कोण θ के संदर्भ में,
जो केंद्र (1/2, 0) एवं त्रिज्या 1/2 वाला वृत्त है। कोण θ के संदर्भ में,
:<math>A = \frac{1}{2}\begin{pmatrix}1 - \cos\theta & \sin\theta \\ \sin\theta & 1 + \cos\theta \end{pmatrix}</math> निष्क्रिय है।
:<math>A = \frac{1}{2}\begin{pmatrix}1 - \cos\theta & \sin\theta \\ \sin\theta & 1 + \cos\theta \end{pmatrix}</math> निष्क्रिय है।


Line 47: Line 47:
==गुण==
==गुण==


===विलक्षणता और नियमितता===
===विलक्षणता एवं नियमितता===
एकमात्र गैर-[[एकवचन मैट्रिक्स|विलक्षण]] [[शिनाख्त सांचा|निष्क्रिय आव्यूह]] आइडेंटिटी आव्यूह है; अर्थात्, यदि गैर-आइडेंटिटी आव्यूह निष्क्रिय है, तो इसकी स्वतंत्र पंक्तियों (और स्तंभों) की संख्या इसकी पंक्तियों (और स्तंभों) की संख्या से अल्प है।
एकमात्र अन्य-[[एकवचन मैट्रिक्स|विलक्षण]] [[शिनाख्त सांचा|निष्क्रिय आव्यूह]] आइडेंटिटी आव्यूह है; अर्थात्, यदि अन्य-आइडेंटिटी आव्यूह निष्क्रिय है, तो इसकी स्वतंत्र पंक्तियों (एवं स्तंभों) की संख्या इसकी पंक्तियों (एवं स्तंभों) की संख्या से अल्प है।


इसे लेखन <math>A^2 = A</math> से देखा जा सकता है, यह मानते हुए {{mvar|A}} की पूर्ण रैंक है (गैर-एकवचन है), और पूर्व-गुणा <math>A^{-1}</math> करके <math>A = IA = A^{-1}A^2 = A^{-1}A = I</math> प्राप्त किया जाता है।  
इसे लेखन <math>A^2 = A</math> से देखा जा सकता है, यह मानते हुए {{mvar|A}} की पूर्ण रैंक है (अन्य-एकवचन है), एवं पूर्व-गुणा <math>A^{-1}</math> करके <math>A = IA = A^{-1}A^2 = A^{-1}A = I</math> प्राप्त किया जाता है।  


जब  निष्क्रिय आव्यूह को आइडेंटिटी आव्यूह से घटा दिया जाता है, तो परिणाम भी निष्क्रिय होता है। यह तब से स्थिर है:
जब  निष्क्रिय आव्यूह को आइडेंटिटी आव्यूह से घटा दिया जाता है, तो परिणाम भी निष्क्रिय होता है। यह तब से स्थिर है:
Line 57: Line 57:


===आइगेनमान ===
===आइगेनमान ===
निष्क्रिय आव्यूह सदैव [[विकर्णीय]] होता है।<ref>{{cite book|last=Horn|first=Roger A.|title=मैट्रिक्स विश्लेषण|last2=Johnson|first2=Charles R.|publisher=Cambridge University Press|year=1990|isbn=0521386322|page=[{{Google books|plainurl=y|id=PlYQN0ypTwEC|page=148|text=every idempotent matrix is diagonalizable}} p. 148]}}</ref> इसके [[eigenvalue|आइगेनमान]] ​​या तो 0 या 1 हैं: यदि <math>\mathbf{x}</math> कुछ निष्क्रिय आव्यूह का गैर-शून्य आइगेनसदिश <math>A</math> और <math>\lambda</math> है, तो फिर, इसका संबद्ध आइगेनमान <math display="inline">\lambda \mathbf{x} = A \mathbf{x} = A^2\mathbf{x} = A \lambda \mathbf{x} = \lambda A \mathbf{x} = \lambda^2 \mathbf{x} ,</math> है, जिसका तात्पर्य <math>\lambda \in \{ 0, 1 \}</math> होता है। इसका तात्पर्य यह है कि निष्क्रिय आव्यूह का निर्धारक सदैव 0 या 1 होता है। जैसा कि ऊपर बताया गया है, यदि निर्धारक एक के समान है, तो आव्यूह विपरीत है और इसलिए यह आइडेंटिटी आव्यूह है।
निष्क्रिय आव्यूह सदैव [[विकर्णीय]] होता है।<ref>{{cite book|last=Horn|first=Roger A.|title=मैट्रिक्स विश्लेषण|last2=Johnson|first2=Charles R.|publisher=Cambridge University Press|year=1990|isbn=0521386322|page=[{{Google books|plainurl=y|id=PlYQN0ypTwEC|page=148|text=every idempotent matrix is diagonalizable}} p. 148]}}</ref> इसके [[eigenvalue|आइगेनमान]] ​​या तो 0 या 1 हैं: यदि <math>\mathbf{x}</math> कुछ निष्क्रिय आव्यूह का अन्य-शून्य आइगेनसदिश <math>A</math> एवं <math>\lambda</math> है, तो फिर, इसका संबद्ध आइगेनमान <math display="inline">\lambda \mathbf{x} = A \mathbf{x} = A^2\mathbf{x} = A \lambda \mathbf{x} = \lambda A \mathbf{x} = \lambda^2 \mathbf{x} ,</math> है, जिसका तात्पर्य <math>\lambda \in \{ 0, 1 \}</math> होता है। इसका तात्पर्य यह है कि निष्क्रिय आव्यूह का निर्धारक सदैव 0 या 1 होता है। जैसा कि ऊपर बताया गया है, यदि निर्धारक एक के समान है, तो आव्यूह विपरीत है एवं इसलिए यह आइडेंटिटी आव्यूह है।


===ट्रेस===
===अनुरेखण===
निष्क्रिय आव्यूह का ट्रेस - इसके मुख्य विकर्ण पर तत्वों का योग - आव्यूह की [[रैंक (रैखिक बीजगणित)|रैंक]] के समान होता है और इस प्रकार सदैव पूर्णांक होता है। यह रैंक की गणना करने का सरल प्रकार प्रदान करता है, या वैकल्पिक रूप से आव्यूह के ट्रेस को निर्धारित करने का सरल प्रकार प्रदान करता है जिसके तत्व विशेष रूप से ज्ञात नहीं हैं (जो आंकड़ों में सहायक है, उदाहरण के लिए, उपयोग में [[पूर्वाग्रह (सांख्यिकी)|पूर्वाग्रह]] की डिग्री स्थापित करने में) विचरण के अनुमान के रूप में विचरण)।
निष्क्रिय आव्यूह का अनुरेखण - इसके मुख्य विकर्ण पर तत्वों का योग - आव्यूह की [[रैंक (रैखिक बीजगणित)|रैंक]] के समान होता है एवं इस प्रकार सदैव पूर्णांक होता है। यह रैंक की गणना करने का सरल प्रकार प्रदान करता है, या वैकल्पिक रूप से आव्यूह के अनुरेखण को निर्धारित करने का सरल प्रकार प्रदान करता है जिसके तत्व विशेष रूप से ज्ञात नहीं हैं (जो आंकड़ों में सहायक है, उदाहरण के लिए, उपयोग में [[पूर्वाग्रह (सांख्यिकी)|पूर्वाग्रह]] की डिग्री स्थापित करने में, विचरण के अनुमान के रूप में विचरण)।


=== निष्क्रिय आव्यूहों के मध्य संबंध ===
=== निष्क्रिय आव्यूहों के मध्य संबंध ===
प्रतिगमन विश्लेषण में, आव्यूह <math>M = I - X(X'X)^{-1} X'</math> अवशिष्टों का उत्पादन करने के लिए जाना जाता है <math>e</math> आश्रित चरों के सदिश के प्रतिगमन से <math>y</math> सहसंयोजकों के आव्यूह पर <math>X</math> होता है। (एप्लिकेशन पर अनुभाग देखें।) अब, <math>X_1</math> के स्तंभों के उपसमुच्चय से बना आव्यूह <math>X</math>, और <math>M_1 = I - X_1 (X_1'X_1)^{-1}X_1'</math> है। ये दोनों दिखाना सरल है <math>M</math> और <math>M_1</math> निष्क्रिय हैं, किन्तु कुछ सीमा तक आश्चर्यजनक तथ्य यह <math>M M_1 = M</math> है। यह है क्योंकि <math>M X_1 = 0</math>, या दूसरे शब्दों में, स्तंभों के प्रतिगमन से अवशेष <math>X_1</math> पर <math>X</math> तब से 0 हैं <math>X_1</math> इसे पूर्ण रूप से प्रक्षेपित किया जा सकता है क्योंकि यह इसका उपसमूह <math>X</math> (प्रत्यक्ष प्रतिस्थापन द्वारा यह दर्शाना भी सरल है <math>M X = 0</math>) है। इससे दो अन्य महत्वपूर्ण परिणाम सामने आते हैं:  तो वह है <math>(M_1 - M)</math> सममित और निष्क्रिय है, और दूसरा <math>(M_1 - M) M = 0</math> है, अर्थात, <math>(M_1 - M)</math> यह ऑर्थोगोनल <math>M</math> है। ये परिणाम महत्वपूर्ण भूमिका निभाते हैं, उदाहरण के लिए, एफ परीक्षण की व्युत्पत्ति में होता है।
प्रतिगमन विश्लेषण में, आव्यूह <math>M = I - X(X'X)^{-1} X'</math> अवशिष्टों <math>e</math> का उत्पादन करने के लिए जाना जाता है, आश्रित चरों के सदिश के प्रतिगमन से <math>y</math> सहसंयोजकों के आव्यूह पर <math>X</math> होता है। (एप्लिकेशन पर अनुभाग देखें।) अब, <math>X_1</math> के स्तंभों के उपसमुच्चय से बना आव्यूह <math>X</math>, एवं <math>M_1 = I - X_1 (X_1'X_1)^{-1}X_1'</math> है। ये दोनों दिखाना सरल है कि <math>M</math> एवं <math>M_1</math> निष्क्रिय हैं, किन्तु कुछ सीमा तक आश्चर्यजनक तथ्य यह <math>M M_1 = M</math> है। यह है क्योंकि <math>M X_1 = 0</math>, या दूसरे शब्दों में, स्तंभों के प्रतिगमन से अवशेष <math>X_1</math> पर <math>X</math> तब से 0 हैं <math>X_1</math> इसे पूर्ण रूप से प्रक्षेपित किया जा सकता है क्योंकि यह इसका उपसमूह <math>X</math> (प्रत्यक्ष प्रतिस्थापन द्वारा यह दर्शाना भी सरल है कि <math>M X = 0</math>) है। इससे दो अन्य महत्वपूर्ण परिणाम सामने आते हैं:  तो वह है <math>(M_1 - M)</math> सममित एवं निष्क्रिय है, एवं दूसरा <math>(M_1 - M) M = 0</math> है, अर्थात, <math>(M_1 - M)</math> यह ऑर्थोगोनल <math>M</math> है। ये परिणाम महत्वपूर्ण भूमिका निभाते हैं, उदाहरण के लिए, F परीक्षण की व्युत्पत्ति में होता है।


निष्क्रिय आव्यूह का कोई भी समान आव्यूह भी निष्क्रिय होता है। आधार परिवर्तन के अंतर्गत निष्क्रियता को संरक्षित किया जाता है। इसे परिवर्तित आव्यूह के गुणन के माध्यम से दिखाया जा सकता है निष्क्रिय होना:  गणित> (एस ए एस^{-1})^2 =(एस ए एस^{-1})(एस ए एस^{-1}) = एस ए (एस^{-1}एस) ए एस^{-1} = एस ए^2 एस^{-1} = एस ए एस^{-1} </गणित>.
निष्क्रिय आव्यूह का कोई भी समान आव्यूह भी निष्क्रिय होता है। आधार परिवर्तन के अंतर्गत निष्क्रियता को संरक्षित किया जाता है। इसे परिवर्तित आव्यूह के गुणन के माध्यम से दिखाया जा सकता है निष्क्रिय होना:  गणित> (एस ए एस{-1})^2 =(एस ए एस^{-1})(एस ए एस^{-1}) = एस ए (एस^{-1}एस) ए एस^{-1} = एस ए^2 एस^{-1} = एस ए एस^{-1} </गणित>.


==अनुप्रयोग==
==अनुप्रयोग==
[[प्रतिगमन विश्लेषण]] और [[अर्थमिति]] में निष्क्रिय आव्यूह प्रायः उत्पन्न होते हैं। उदाहरण के लिए, सामान्य न्यूनतम वर्गों में, प्रतिगमन समस्या गुणांक अनुमान के सदिश {{mvar|&beta;}}  का चयन करना है जिससे कि वर्ग अवशेषों (त्रुटिपूर्ण पूर्वानुमानों) ''e<sub>i</sub>'' के योग को कम किया जा सके: आव्यूह रूप में,
[[प्रतिगमन विश्लेषण]] एवं [[अर्थमिति]] में निष्क्रिय आव्यूह प्रायः उत्पन्न होते हैं। उदाहरण के लिए, सामान्य न्यूनतम वर्गों में, प्रतिगमन समस्या गुणांक अनुमान के सदिश {{mvar|&beta;}}  का चयन करना है जिससे कि वर्ग अवशेषों (त्रुटिपूर्ण पूर्वानुमानों) ''e<sub>i</sub>'' के योग को कम किया जा सके: आव्यूह रूप में,
: न्यूनतम <math>(y - X\beta)^\textsf{T}(y - X\beta) </math>
: न्यूनतम <math>(y - X\beta)^\textsf{T}(y - X\beta) </math>,
जहां <math>y</math> आश्रित चर अवलोकनों का सदिश है, और <math>X</math> आव्यूह है जिसका प्रत्येक कॉलम स्वतंत्र चर में से एक पर टिप्पणियों का कॉलम है। परिणामी अनुमानक है:
जहां <math>y</math> आश्रित चर अवलोकनों का सदिश है, एवं <math>X</math> आव्यूह है जिसका प्रत्येक कॉलम स्वतंत्र चर में से एक पर टिप्पणियों का कॉलम है। परिणामी अनुमानक है:


:<math>\hat\beta = \left(X^\textsf{T}X\right)^{-1}X^\textsf{T}y </math>
:<math>\hat\beta = \left(X^\textsf{T}X\right)^{-1}X^\textsf{T}y </math>
जहां सुपरस्क्रिप्ट ''T''  स्थानान्तरण को प्रदर्शित करता है, और अवशेषों का सदिश है।<ref name=Greene/>
जहां सुपरस्क्रिप्ट ''T''  स्थानान्तरण को प्रदर्शित करता है, एवं अवशेषों का सदिश है।<ref name=Greene/>


:<math>
:<math>
Line 79: Line 79:
           = y - X\left(X^\textsf{T}X\right)^{-1}X^\textsf{T}y
           = y - X\left(X^\textsf{T}X\right)^{-1}X^\textsf{T}y
           = \left[I - X\left(X^\textsf{T}X\right)^{-1}X^\textsf{T}\right]y
           = \left[I - X\left(X^\textsf{T}X\right)^{-1}X^\textsf{T}\right]y
           = My.
           = My,
</math>
</math>
यहाँ दोनों <math>M</math> और <math>X\left(X^\textsf{T}X\right)^{-1}X^\textsf{T}</math>(पश्चात वाले को [[टोपी मैट्रिक्स|हैट आव्यूह]] के रूप में जाना जाता है) निष्क्रिय और सममित आव्यूह हैं, तथ्य जो वर्ग अवशेषों के योग की गणना करते समय सरलीकरण की अनुमति देता है:
यहाँ दोनों <math>M</math> एवं <math>X\left(X^\textsf{T}X\right)^{-1}X^\textsf{T}</math>(पश्चात वाले को [[टोपी मैट्रिक्स|हैट आव्यूह]] के रूप में जाना जाता है) निष्क्रिय एवं सममित आव्यूह हैं, तथ्य जो वर्ग अवशेषों के योग की गणना करते समय सरलीकरण की अनुमति देता है:


:<math>\hat{e}^\textsf{T}\hat{e} = (My)^\textsf{T}(My) = y^\textsf{T}M^\textsf{T}My = y^\textsf{T}MMy = y^\textsf{T}My.</math>
:<math>\hat{e}^\textsf{T}\hat{e} = (My)^\textsf{T}(My) = y^\textsf{T}M^\textsf{T}My = y^\textsf{T}MMy = y^\textsf{T}My,</math>
<math>M</math> की निष्क्रियता अन्य गणनाओं में भी भूमिका निभाती है, जैसे अनुमानक के विचरण को निर्धारित करने में <math>\hat{\beta}</math> करता है।  
<math>M</math> की निष्क्रियता अन्य गणनाओं में भी भूमिका निभाती है, जैसे अनुमानक के विचरण को निर्धारित करने में <math>\hat{\beta}</math> करता है।  


निष्क्रिय रैखिक ऑपरेटर <math>P</math> [[स्तंभ स्थान]] पर प्रक्षेपण ऑपरेटर {{tmath|R(P)}} है इसके शून्य स्थान के साथ {{tmath|N(P)}}है। <math>P</math> [[ ऑर्थोगोनल प्रक्षेपण |ऑर्थोगोनल प्रक्षेपण]] ऑपरेटर है यदि और केवल यह निष्क्रिय और [[सममित मैट्रिक्स|सममित आव्यूह]] है।
निष्क्रिय रैखिक ऑपरेटर <math>P</math> [[स्तंभ स्थान]] पर प्रक्षेपण ऑपरेटर {{tmath|R(P)}} है इसके शून्य स्थान के साथ {{tmath|N(P)}} है। <math>P</math> [[ ऑर्थोगोनल प्रक्षेपण |ऑर्थोगोनल प्रक्षेपण]] ऑपरेटर है यदि एवं केवल यह निष्क्रिय एवं [[सममित मैट्रिक्स|सममित आव्यूह]] है।


==यह भी देखें==
==यह भी देखें==

Revision as of 17:35, 13 July 2023

रैखिक बीजगणित में, निष्क्रिय आव्यूह ऐसा आव्यूह होता है, जिसे जब स्वयं से गुणा किया जाता है, तो स्वयं ही परिणाम प्राप्त होता है।[1][2] अर्थात आव्यूह निष्क्रिय है यदि एवं केवल होता है। इस उत्पाद के लिए को परिभाषित किया जाना है, आवश्यक रूप से वर्ग आव्यूह होना चाहिए। इस प्रकार से देखने पर, निष्क्रिय आव्यूह, आव्यूह वलय के निष्क्रिय तत्व हैं।

उदाहरण

इसके उदाहरण निष्क्रिय आव्यूह हैं:

इसके उदाहरण निष्क्रिय आव्यूह हैं:

वास्तविक 2 × 2 स्थिति

यदि आव्यूह निष्क्रिय है, तो

  • जिसका अर्थ इसलिए या है।
  • जिसका अर्थ इसलिए या है।

इस प्रकार, a के लिए आवश्यक नियम आव्यूह का निष्क्रिय होना यह है कि या तो यह विकर्ण आव्यूह है या इसका अनुरेखण 1 के समान है। निष्क्रिय विकर्ण आव्यूह के लिए, एवं या तो 1 या 0 होना चाहिए।

यदि , गणित का सवाल निष्क्रिय प्रदान किया जाएगा अतः a द्विघात समीकरण को संतुष्ट करता है।

या

जो केंद्र (1/2, 0) एवं त्रिज्या 1/2 वाला वृत्त है। कोण θ के संदर्भ में,

निष्क्रिय है।

चूँकि, कोई आवश्यक नियम नहीं है: कोई भी आव्यूह;

साथ निष्क्रिय है।

गुण

विलक्षणता एवं नियमितता

एकमात्र अन्य-विलक्षण निष्क्रिय आव्यूह आइडेंटिटी आव्यूह है; अर्थात्, यदि अन्य-आइडेंटिटी आव्यूह निष्क्रिय है, तो इसकी स्वतंत्र पंक्तियों (एवं स्तंभों) की संख्या इसकी पंक्तियों (एवं स्तंभों) की संख्या से अल्प है।

इसे लेखन से देखा जा सकता है, यह मानते हुए A की पूर्ण रैंक है (अन्य-एकवचन है), एवं पूर्व-गुणा करके प्राप्त किया जाता है।  

जब निष्क्रिय आव्यूह को आइडेंटिटी आव्यूह से घटा दिया जाता है, तो परिणाम भी निष्क्रिय होता है। यह तब से स्थिर है:

यदि आव्यूह A निष्क्रिय है तो सभी धनात्मक पूर्णांक n के लिए निष्क्रिय है, इसे प्रेरण द्वारा प्रमाण का उपयोग करके दिखाया जा सकता है। स्पष्ट रूप से हमारे पास इसका परिणाम है, जैसा है। मान लीजिये कि है। तब, , क्योंकि A निष्क्रिय है। अत: प्रेरण के सिद्धांत से परिणाम अनुसरण करता है।

आइगेनमान

निष्क्रिय आव्यूह सदैव विकर्णीय होता है।[3] इसके आइगेनमान ​​या तो 0 या 1 हैं: यदि कुछ निष्क्रिय आव्यूह का अन्य-शून्य आइगेनसदिश एवं है, तो फिर, इसका संबद्ध आइगेनमान है, जिसका तात्पर्य होता है। इसका तात्पर्य यह है कि निष्क्रिय आव्यूह का निर्धारक सदैव 0 या 1 होता है। जैसा कि ऊपर बताया गया है, यदि निर्धारक एक के समान है, तो आव्यूह विपरीत है एवं इसलिए यह आइडेंटिटी आव्यूह है।

अनुरेखण

निष्क्रिय आव्यूह का अनुरेखण - इसके मुख्य विकर्ण पर तत्वों का योग - आव्यूह की रैंक के समान होता है एवं इस प्रकार सदैव पूर्णांक होता है। यह रैंक की गणना करने का सरल प्रकार प्रदान करता है, या वैकल्पिक रूप से आव्यूह के अनुरेखण को निर्धारित करने का सरल प्रकार प्रदान करता है जिसके तत्व विशेष रूप से ज्ञात नहीं हैं (जो आंकड़ों में सहायक है, उदाहरण के लिए, उपयोग में पूर्वाग्रह की डिग्री स्थापित करने में, विचरण के अनुमान के रूप में विचरण)।

निष्क्रिय आव्यूहों के मध्य संबंध

प्रतिगमन विश्लेषण में, आव्यूह अवशिष्टों का उत्पादन करने के लिए जाना जाता है, आश्रित चरों के सदिश के प्रतिगमन से सहसंयोजकों के आव्यूह पर होता है। (एप्लिकेशन पर अनुभाग देखें।) अब, के स्तंभों के उपसमुच्चय से बना आव्यूह , एवं है। ये दोनों दिखाना सरल है कि एवं निष्क्रिय हैं, किन्तु कुछ सीमा तक आश्चर्यजनक तथ्य यह है। यह है क्योंकि , या दूसरे शब्दों में, स्तंभों के प्रतिगमन से अवशेष पर तब से 0 हैं इसे पूर्ण रूप से प्रक्षेपित किया जा सकता है क्योंकि यह इसका उपसमूह (प्रत्यक्ष प्रतिस्थापन द्वारा यह दर्शाना भी सरल है कि ) है। इससे दो अन्य महत्वपूर्ण परिणाम सामने आते हैं: तो वह है सममित एवं निष्क्रिय है, एवं दूसरा है, अर्थात, यह ऑर्थोगोनल है। ये परिणाम महत्वपूर्ण भूमिका निभाते हैं, उदाहरण के लिए, F परीक्षण की व्युत्पत्ति में होता है।

निष्क्रिय आव्यूह का कोई भी समान आव्यूह भी निष्क्रिय होता है। आधार परिवर्तन के अंतर्गत निष्क्रियता को संरक्षित किया जाता है। इसे परिवर्तित आव्यूह के गुणन के माध्यम से दिखाया जा सकता है निष्क्रिय होना: गणित> (एस ए एस{-1})^2 =(एस ए एस^{-1})(एस ए एस^{-1}) = एस ए (एस^{-1}एस) ए एस^{-1} = एस ए^2 एस^{-1} = एस ए एस^{-1} </गणित>.

अनुप्रयोग

प्रतिगमन विश्लेषण एवं अर्थमिति में निष्क्रिय आव्यूह प्रायः उत्पन्न होते हैं। उदाहरण के लिए, सामान्य न्यूनतम वर्गों में, प्रतिगमन समस्या गुणांक अनुमान के सदिश β का चयन करना है जिससे कि वर्ग अवशेषों (त्रुटिपूर्ण पूर्वानुमानों) ei के योग को कम किया जा सके: आव्यूह रूप में,

न्यूनतम ,

जहां आश्रित चर अवलोकनों का सदिश है, एवं आव्यूह है जिसका प्रत्येक कॉलम स्वतंत्र चर में से एक पर टिप्पणियों का कॉलम है। परिणामी अनुमानक है:

जहां सुपरस्क्रिप्ट T स्थानान्तरण को प्रदर्शित करता है, एवं अवशेषों का सदिश है।[2]

यहाँ दोनों एवं (पश्चात वाले को हैट आव्यूह के रूप में जाना जाता है) निष्क्रिय एवं सममित आव्यूह हैं, तथ्य जो वर्ग अवशेषों के योग की गणना करते समय सरलीकरण की अनुमति देता है:

की निष्क्रियता अन्य गणनाओं में भी भूमिका निभाती है, जैसे अनुमानक के विचरण को निर्धारित करने में करता है।

निष्क्रिय रैखिक ऑपरेटर स्तंभ स्थान पर प्रक्षेपण ऑपरेटर है इसके शून्य स्थान के साथ है। ऑर्थोगोनल प्रक्षेपण ऑपरेटर है यदि एवं केवल यह निष्क्रिय एवं सममित आव्यूह है।

यह भी देखें

संदर्भ

  1. Chiang, Alpha C. (1984). गणितीय अर्थशास्त्र की मौलिक विधियाँ (3rd ed.). New York: McGraw–Hill. p. 80. ISBN 0070108137.
  2. 2.0 2.1 Greene, William H. (2003). अर्थमितीय विश्लेषण (5th ed.). Upper Saddle River, NJ: Prentice–Hall. pp. 808–809. ISBN 0130661899.
  3. Horn, Roger A.; Johnson, Charles R. (1990). मैट्रिक्स विश्लेषण. Cambridge University Press. p. p. 148. ISBN 0521386322.