सेंट्रोसिमेट्रिक मैट्रिक्स: Difference between revisions

From Vigyanwiki
No edit summary
Line 52: Line 52:
{{Matrix classes}}
{{Matrix classes}}


{{DEFAULTSORT:Centrosymmetric Matrix}}[[Category: लीनियर अलजेब्रा]] [[Category: मैट्रिसेस]]
{{DEFAULTSORT:Centrosymmetric Matrix}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Centrosymmetric Matrix]]
 
[[Category:Collapse templates|Centrosymmetric Matrix]]
[[Category: Machine Translated Page]]
[[Category:Created On 19/07/2023|Centrosymmetric Matrix]]
[[Category:Created On 19/07/2023]]
[[Category:Machine Translated Page|Centrosymmetric Matrix]]
[[Category:Vigyan Ready]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Centrosymmetric Matrix]]
[[Category:Pages with empty portal template|Centrosymmetric Matrix]]
[[Category:Pages with script errors|Centrosymmetric Matrix]]
[[Category:Portal-inline template with redlinked portals|Centrosymmetric Matrix]]
[[Category:Sidebars with styles needing conversion|Centrosymmetric Matrix]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Centrosymmetric Matrix]]
[[Category:Templates generating microformats|Centrosymmetric Matrix]]
[[Category:Templates that are not mobile friendly|Centrosymmetric Matrix]]
[[Category:Templates using TemplateData|Centrosymmetric Matrix]]
[[Category:Wikipedia metatemplates|Centrosymmetric Matrix]]
[[Category:मैट्रिसेस|Centrosymmetric Matrix]]
[[Category:लीनियर अलजेब्रा|Centrosymmetric Matrix]]

Revision as of 11:05, 17 August 2023

सेंट्रोसिमेट्रिक 5×5 आव्यूह का समरूपता प्रारूप

गणित में, विशेष रूप से रैखिक बीजगणित एवं आव्यूह सिद्धांत में, सेंट्रोसिमेट्रिक आव्यूह ऐसा आव्यूह होता है जो अपने केंद्र के विषय में सममित होता है। अधिक त्रुटिहीन रूप से, n×n आव्यूह A = [Ai,j] सेंट्रोसिमेट्रिक है जब इसकी प्रविष्टियाँ,

Ai,j = Ani + 1,nj + 1 i, j ∊{1, ..., n} के लिए संतुष्ट होती हैं।

यदि J, प्रतिविकर्ण पर 1 एवं अन्यत्र 0 के साथ n×n विनिमय आव्यूह को प्रदर्शित करता है (अर्थात, Ji,n + 1 − i = 1; Ji,j = 0 यदि j ≠ n +1− i), यदि एवं केवल AJ = JA है, तो आव्यूह A सेंट्रोसिमेट्रिक है।

उदाहरण

  • सभी 2×2 सेंट्रोसिमेट्रिक आव्यूह का रूप होता है,
  • सभी 3×3 सेंट्रोसिमेट्रिक आव्यूह का रूप होता है,
  • सममित टोप्लिट्ज़ आव्यूह सेंट्रोसिमेट्रिक आव्यूह हैं।

बीजगणितीय संरचना एवं गुण

  • यदि A एवं B क्षेत्र F पर सेंट्रोसिमेट्रिक आव्यूह हैं, तो F में किसी भी c के लिए A + B एवं cA भी हैं। इसके अतिरिक्त, आव्यूह उत्पाद AB सेंट्रोसिमेट्रिक है, क्योंकि JAB = AJB = ABJ होते हैं। चूँकि आइडेंटिटी आव्यूह भी सेंट्रोसिमेट्रिक है, यह इस प्रकार है कि F पर n×n सेंट्रोसिमेट्रिक आव्यूह का समुच्चय सभी n×n आव्यूह के साहचर्य बीजगणित का उप-बीजगणित है।
  • यदि A, m-आयामी आइगेनबेसिस वाला सेंट्रोसिमेट्रिक आव्यूह है, तो इसके m आइगेनवेक्टर्स का चयन किया जा सकता है जिससे कि वे या तो x = Jx या x = −Jx को संतुष्ट करते हैं जहां J एक्सचेंज आव्यूह है।
  • यदि A भिन्न -भिन्न आइगेनमान के साथ सेंट्रोसिमेट्रिक आव्यूह है, तो A के साथ आने वाले आव्यूह को सेंट्रोसिमेट्रिक होना चाहिए।[1]
  • m × m सेंट्रोसिमेट्रिक आव्यूह में अद्वितीय तत्वों की अधिकतम संख्या है।

संबंधित संरचनाएं

n×n आव्यूह A को स्क्यू-सेंट्रोसिमेट्रिक कहा जाता है यदि इसकी प्रविष्टियाँ A i,j = −Ani+1,nj+1 i, को j ∊ {1, ..., n} के लिए संतुष्ट करती हैं। समान रूप से, यदि AJ = −JA है, तो A स्क्यू-सेंट्रोसिमेट्रिक है, जहां J ऊपर परिभाषित विनिमय आव्यूह है।

सेंट्रोसिमेट्रिक संबंध AJ = JA स्वयं प्राकृतिक सामान्यीकरण के लिए उपयोग होता है, जहां J को अनैच्छिक आव्यूह K (अर्थात्, K2= I) से परिवर्तित कर दिया जाता है[2][3][4] या, सामान्यतः, आव्यूह K, पूर्णांक m > 1 के लिए Km = I को संतुष्ट करता है।[1] निश्चित आव्यूह A के साथ आवागमन करने वाले सभी अनैच्छिक K की पहचान करने के लिए रूपान्तरण संबंध AK = KA के लिए व्युत्क्रम समस्या का भी अध्ययन किया गया है।[1]

सममित सेंट्रोसिमेट्रिक आव्यूह को कभी-कभी द्विसममित आव्यूह भी कहा जाता है। जब क्षेत्र वास्तविक संख्याओं का क्षेत्र होता है, तो यह प्रदर्शित किया गया है कि द्विसममितीय आव्यूह वास्तव में वे सममित आव्यूह होते हैं जिनके आइगेनमान एक्सचेंज आव्यूह द्वारा पूर्व या पश्चात के गुणन के पश्चात संभावित संकेत परिवर्तनों से भिन्न रहते हैं।[3] समान परिणाम हर्मिटियन सेंट्रोसिमेट्रिक एवं स्क्यू-सेंट्रोसिमेट्रिक आव्यूह के लिए है।[5]

संदर्भ

  1. 1.0 1.1 1.2 Yasuda, Mark (2012). "कम्यूटिंग और एंटी-कम्यूटिंग एम-इन्वोल्यूशन के कुछ गुण". Acta Mathematica Scientia. 32 (2): 631–644. doi:10.1016/S0252-9602(12)60044-7.
  2. Andrew, Alan (1973). "कुछ आव्यूहों के eigenvectors". Linear Algebra Appl. 7 (2): 151–162. doi:10.1016/0024-3795(73)90049-9.
  3. 3.0 3.1 Tao, David; Yasuda, Mark (2002). "A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices". SIAM J. Matrix Anal. Appl. 23 (3): 885–895. doi:10.1137/S0895479801386730.
  4. Trench, W. F. (2004). "सामान्यीकृत समरूपता या तिरछी समरूपता वाले मैट्रिक्स की विशेषता और गुण". Linear Algebra Appl. 377: 207–218. doi:10.1016/j.laa.2003.07.013.
  5. Yasuda, Mark (2003). "हर्मिटियन सेंट्रोसिमेट्रिक और हर्मिटियन स्क्यू-सेंट्रोसिमेट्रिक के-मैट्रिसेस का एक वर्णक्रमीय लक्षण वर्णन". SIAM J. Matrix Anal. Appl. 25 (3): 601–605. doi:10.1137/S0895479802418835.

अग्रिम पठन

बाहरी संबंध