मैट्रिक्स फ़ील्ड: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[अमूर्त बीजगणित]] में, '''मैट्रिक्स फ़ील्ड''' एक [[फ़ील्ड (गणित)]] है जिसमें तत्वों के रूप में [[मैट्रिक्स (गणित)]] होता है। फ़ील्ड (गणित) सिद्धांत में फ़ील्ड दो प्रकार के होते हैं: परिमित फ़ील्ड और [[अनंत सेट|अनंत समुच्चय]] फ़ील्ड। विभिन्न विशेषताओं (बीजगणित) और [[प्रमुखता]] के मैट्रिक्स फ़ील्ड के कई उदाहरण हैं।
[[अमूर्त बीजगणित]] में, '''आव्युह क्षेत्र''' एक [[फ़ील्ड (गणित)|क्षेत्र (गणित)]] है जिसमें अवयव के रूप में [[मैट्रिक्स (गणित)|आव्युह (गणित)]] होता है। क्षेत्र (गणित) सिद्धांत में क्षेत्र दो प्रकार के होते हैं: परिमित क्षेत्र और [[अनंत सेट|अनंत समुच्चय]] क्षेत्र है। विभिन्न विशेषताओं (बीजगणित) और [[प्रमुखता]] के आव्युह क्षेत्र के कई उदाहरण हैं।


प्रत्येक [[अभाज्य संख्या]] ''पी'' के लिए कार्डिनैलिटी ''पी'' का सीमित मैट्रिक्स क्षेत्र है। किसी भी अभाज्य संख्या ''पी'' के लिए विशेषता ''पी'' के कई परिमित मैट्रिक्स फ़ील्ड पा सकते हैं। सामान्यतः, प्रत्येक [[परिमित क्षेत्र]] के अनुरूप मैट्रिक्स क्षेत्र होता है। चूँकि समान कार्डिनैलिटी के कोई भी दो परिमित क्षेत्र [[समरूपी]] होते हैं, परिमित क्षेत्र के तत्वों को आव्यूहों द्वारा दर्शाया जा सकता है।<ref>{{cite book| last=Lidl | first=Rudolf | last2=Niederreiter | first2=Harald | author2-link = Harald Niederreiter | title=परिमित क्षेत्रों और उनके अनुप्रयोगों का परिचय| url=https://archive.org/details/introductiontofi0000lidl | url-access=registration | edition=1st | year=1986 | publisher=[[Cambridge University Press]] | isbn=0-521-30706-6 }}</ref>
प्रत्येक [[अभाज्य संख्या]] ''p'' के लिए कार्डिनैलिटी ''p'' का सीमित आव्युह क्षेत्र है। किसी भी अभाज्य संख्या ''p'' के लिए विशेषता ''p'' के कई परिमित आव्युह क्षेत्र प्राप्त कर सकते हैं। सामान्यतः, प्रत्येक [[परिमित क्षेत्र]] के अनुरूप आव्युह क्षेत्र होता है। चूँकि समान कार्डिनैलिटी के कोई भी दो परिमित क्षेत्र [[समरूपी]] होते हैं, परिमित क्षेत्र के अवयव को आव्यूहों द्वारा दर्शाया जा सकता है।<ref>{{cite book| last=Lidl | first=Rudolf | last2=Niederreiter | first2=Harald | author2-link = Harald Niederreiter | title=परिमित क्षेत्रों और उनके अनुप्रयोगों का परिचय| url=https://archive.org/details/introductiontofi0000lidl | url-access=registration | edition=1st | year=1986 | publisher=[[Cambridge University Press]] | isbn=0-521-30706-6 }}</ref>


[[मैट्रिक्स गुणन]] की सामान्य स्थिति के विपरीत, मैट्रिक्स फ़ील्ड में गुणन क्रमविनिमेय गुण है (यदि सामान्य संचालन का उपयोग किया जाता है)। चूंकि आव्यूहों के जोड़ और गुणन में गुणन की क्रमविनिमेयता और गुणक व्युत्क्रमों के अस्तित्व को छोड़कर क्षेत्र संचालन के लिए सभी आवश्यक गुण होते हैं, इसलिए यह सत्यापित करने की विधि है कि क्या आव्यूहों का [[शिनाख्त सांचा|समुच्चय मैट्रिक्स]] योग और गुणन के सामान्य संचालन वाला क्षेत्र है या नहीं
[[मैट्रिक्स गुणन|आव्युह गुणन]] की सामान्य स्थिति के विपरीत, आव्युह क्षेत्र में गुणन क्रमविनिमेय गुण है (यदि सामान्य संचालन का उपयोग किया जाता है)। चूंकि आव्यूहों के जोड़ और गुणन में गुणन की क्रमविनिमेयता और गुणक व्युत्क्रमों के अस्तित्व को छोड़कर क्षेत्र संचालन के लिए सभी आवश्यक गुण होते हैं, इसलिए यह सत्यापित करने की विधि है कि क्या आव्यूहों का [[शिनाख्त सांचा|समुच्चय आव्युह]] योग और गुणन के सामान्य संचालन वाला क्षेत्र है या नहीं


# समुच्चय जोड़, घटाव और गुणा के अनुसार क्लोजर (गणित) है;
# समुच्चय जोड़, घटाव और गुणा के अनुसार क्लोजर (गणित) है;
# मैट्रिक्स जोड़ के लिए तटस्थ तत्व (अर्थात, [[शून्य मैट्रिक्स]]) सम्मिलित है;
# आव्युह जोड़ के लिए तटस्थ अवयव (अर्थात, [[शून्य मैट्रिक्स|शून्य आव्युह]]) सम्मिलित है;
# गुणन क्रमविनिमेय है;
# गुणन क्रमविनिमेय है;
# समुच्चय में गुणात्मक [[पहचान तत्व|समानता तत्व]] सम्मिलित है (ध्यान दें कि यह समानता मैट्रिक्स होना जरूरी नहीं है); और
# समुच्चय में गुणात्मक [[पहचान तत्व|समानता अवयव]] सम्मिलित है (ध्यान दें कि यह समानता आव्युह होना जरूरी नहीं है); और
# प्रत्येक मैट्रिक्स जो शून्य मैट्रिक्स नहीं है, उसमें गुणात्मक व्युत्क्रम होता है।
# प्रत्येक आव्युह जो शून्य आव्युह नहीं है, उसमें गुणात्मक व्युत्क्रम होता है।
==उदाहरण==
==उदाहरण==
1. फॉर्म के सभी n × n आव्यूहों का [[सेट (गणित)|समुच्चय (गणित)]] लें
1. रूप के सभी n × n आव्यूहों का [[सेट (गणित)|समुच्चय (गणित)]] लें
:<math>\begin{pmatrix}
:<math>\begin{pmatrix}
a      & a      & \cdots & a \\
a      & a      & \cdots & a \\
Line 18: Line 18:
0      & 0      & \cdots & 0  
0      & 0      & \cdots & 0  
\end{pmatrix}</math>
\end{pmatrix}</math>
<math>a\in \mathbb{R}</math> के साथ {{en dash}} अर्थात्, पहली पंक्ति को छोड़कर शून्य से भरी आव्यूह, जो समान [[वास्तविक संख्या]] स्थिरांक <math>a</math> से भरी होती है, ये आव्यूह गुणन के लिए क्रमविनिमेय हैं:
<math>a\in \mathbb{R}</math> के साथ {{en dash}} अर्थात्, प्रथम पंक्ति को छोड़कर शून्य से भरी आव्यूह, जो समान [[वास्तविक संख्या]] स्थिरांक <math>a</math> से भरी होती है, ये आव्यूह गुणन के लिए क्रमविनिमेय हैं:
:<math>\begin{pmatrix}
:<math>\begin{pmatrix}
a      & a      & \cdots & a \\
a      & a      & \cdots & a \\
Line 58: Line 58:
\end{pmatrix}</math>.
\end{pmatrix}</math>.


<math>a\neq 0</math> के साथ मैट्रिक्स <math>\begin{pmatrix}
<math>a\neq 0</math> के साथ आव्युह <math>\begin{pmatrix}
a      & a      & \cdots & a \\
a      & a      & \cdots & a \\
0      & 0      & \cdots & 0 \\
0      & 0      & \cdots & 0 \\
Line 70: Line 70:
\end{pmatrix}.</math> द्वारा दिया गया है
\end{pmatrix}.</math> द्वारा दिया गया है


यह देखना आसान है कि यह मैट्रिक्स फ़ील्ड मानचित्र <math>a \mapsto \begin{pmatrix}
यह देखना सरल है कि यह आव्युह क्षेत्र मानचित्र <math>a \mapsto \begin{pmatrix}
a      & a      & \cdots & a \\
a      & a      & \cdots & a \\
0      & 0      & \cdots & 0 \\
0      & 0      & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots  \\
\vdots & \vdots & \ddots & \vdots  \\
0      & 0      & \cdots & 0  
0      & 0      & \cdots & 0  
\end{pmatrix}</math> के अंतर्गत वास्तविक संख्याओं के फ़ील्ड के समरूपी है.
\end{pmatrix}</math> के अंतर्गत वास्तविक संख्याओं के क्षेत्र के समरूपी है.


2. फॉर्म के आव्यूहों का समुच्चय
2. रूप के आव्यूहों का समुच्चय
:<math>\begin{pmatrix}
:<math>\begin{pmatrix}
a & -b \\
a & -b \\
b & a
b & a
\end{pmatrix},</math>
\end{pmatrix},</math>
जहाँ <math>a</math> और <math>b</math> की सीमा वास्तविक संख्याओं के क्षेत्र पर होती है, एक मैट्रिक्स फ़ील्ड बनाता है जो सम्मिश्र संख्या का फ़ील्ड <math>\mathbb{C}</math> के लिए आइसोमोर्फिक है : <math>a</math>, संख्या की सम्मिश्र संख्या से मेल खाती है जबकि <math>b</math> सम्मिश्र संख्या से मेल खाता है। तब, उदाहरण के लिए, संख्या <math>2+3i</math>, के रूप में दर्शाया जाएगा
जहाँ <math>a</math> और <math>b</math> की सीमा वास्तविक संख्याओं के क्षेत्र पर होती है, एक आव्युह क्षेत्र बनाता है जो सम्मिश्र संख्या का क्षेत्र <math>\mathbb{C}</math> के लिए आइसोमोर्फिक है : <math>a</math>, संख्या की सम्मिश्र संख्या से मेल खाती है जबकि <math>b</math> सम्मिश्र संख्या से मेल खाता है। तब, उदाहरण के लिए, संख्या <math>2+3i</math>, के रूप में दर्शाया जाएगा
:<math>\begin{pmatrix}
:<math>\begin{pmatrix}
2 & -3 \\
2 & -3 \\
3 & 2
3 & 2
\end{pmatrix}.</math>
\end{pmatrix}.</math>
कोई भी इसे आसानी से सत्यापित कर सकता है <math>i^2 = -1</math>:
कोई भी इसे सरल से सत्यापित कर सकता है <math>i^2 = -1</math>:
:<math>\begin{pmatrix}
:<math>\begin{pmatrix}
0 & -1 \\
0 & -1 \\
Line 97: Line 97:
  0 & -1
  0 & -1
\end{pmatrix},</math>
\end{pmatrix},</math>
और साथ ही, [[ मैट्रिक्स घातांक |मैट्रिक्स घातांक]] की गणना करके, यूलर की समानता, <math>e^{i\pi}=-1</math> मान्य है:
और साथ ही, [[ मैट्रिक्स घातांक |आव्युह घातांक]] की गणना करके, यूलर की समानता, <math>e^{i\pi}=-1</math> मान्य है:
:<math>e^{\begin{pmatrix}
:<math>e^{\begin{pmatrix}
0 & -1 \\
0 & -1 \\
Line 115: Line 115:


{{div col|colwidth=25em}}
{{div col|colwidth=25em}}
* फ़ील्ड (गणित)
* क्षेत्र (गणित)
*परिमित क्षेत्र
*परिमित क्षेत्र
* [[बीजगणितीय संरचना]]
* [[बीजगणितीय संरचना]]
* [[गैलोइस सिद्धांत]]
* [[गैलोइस सिद्धांत]]
* [[मैट्रिक्स रिंग]]
* [[आव्युह वलय]]
*[[मैट्रिक्स समूह]]
*[[आव्युह समूह]]
*
*
  {{div col end}}
  {{div col end}}

Revision as of 15:29, 25 July 2023

अमूर्त बीजगणित में, आव्युह क्षेत्र एक क्षेत्र (गणित) है जिसमें अवयव के रूप में आव्युह (गणित) होता है। क्षेत्र (गणित) सिद्धांत में क्षेत्र दो प्रकार के होते हैं: परिमित क्षेत्र और अनंत समुच्चय क्षेत्र है। विभिन्न विशेषताओं (बीजगणित) और प्रमुखता के आव्युह क्षेत्र के कई उदाहरण हैं।

प्रत्येक अभाज्य संख्या p के लिए कार्डिनैलिटी p का सीमित आव्युह क्षेत्र है। किसी भी अभाज्य संख्या p के लिए विशेषता p के कई परिमित आव्युह क्षेत्र प्राप्त कर सकते हैं। सामान्यतः, प्रत्येक परिमित क्षेत्र के अनुरूप आव्युह क्षेत्र होता है। चूँकि समान कार्डिनैलिटी के कोई भी दो परिमित क्षेत्र समरूपी होते हैं, परिमित क्षेत्र के अवयव को आव्यूहों द्वारा दर्शाया जा सकता है।[1]

आव्युह गुणन की सामान्य स्थिति के विपरीत, आव्युह क्षेत्र में गुणन क्रमविनिमेय गुण है (यदि सामान्य संचालन का उपयोग किया जाता है)। चूंकि आव्यूहों के जोड़ और गुणन में गुणन की क्रमविनिमेयता और गुणक व्युत्क्रमों के अस्तित्व को छोड़कर क्षेत्र संचालन के लिए सभी आवश्यक गुण होते हैं, इसलिए यह सत्यापित करने की विधि है कि क्या आव्यूहों का समुच्चय आव्युह योग और गुणन के सामान्य संचालन वाला क्षेत्र है या नहीं

  1. समुच्चय जोड़, घटाव और गुणा के अनुसार क्लोजर (गणित) है;
  2. आव्युह जोड़ के लिए तटस्थ अवयव (अर्थात, शून्य आव्युह) सम्मिलित है;
  3. गुणन क्रमविनिमेय है;
  4. समुच्चय में गुणात्मक समानता अवयव सम्मिलित है (ध्यान दें कि यह समानता आव्युह होना जरूरी नहीं है); और
  5. प्रत्येक आव्युह जो शून्य आव्युह नहीं है, उसमें गुणात्मक व्युत्क्रम होता है।

उदाहरण

1. रूप के सभी n × n आव्यूहों का समुच्चय (गणित) लें

के साथ – अर्थात्, प्रथम पंक्ति को छोड़कर शून्य से भरी आव्यूह, जो समान वास्तविक संख्या स्थिरांक से भरी होती है, ये आव्यूह गुणन के लिए क्रमविनिमेय हैं:

.

गुणात्मक समानता है .

के साथ आव्युह का गुणनात्मक व्युत्क्रम द्वारा दिया गया है

यह देखना सरल है कि यह आव्युह क्षेत्र मानचित्र के अंतर्गत वास्तविक संख्याओं के क्षेत्र के समरूपी है.

2. रूप के आव्यूहों का समुच्चय

जहाँ और की सीमा वास्तविक संख्याओं के क्षेत्र पर होती है, एक आव्युह क्षेत्र बनाता है जो सम्मिश्र संख्या का क्षेत्र के लिए आइसोमोर्फिक है : , संख्या की सम्मिश्र संख्या से मेल खाती है जबकि सम्मिश्र संख्या से मेल खाता है। तब, उदाहरण के लिए, संख्या , के रूप में दर्शाया जाएगा

कोई भी इसे सरल से सत्यापित कर सकता है :

और साथ ही, आव्युह घातांक की गणना करके, यूलर की समानता, मान्य है:

.

यह भी देखें

संदर्भ

  1. Lidl, Rudolf; Niederreiter, Harald (1986). परिमित क्षेत्रों और उनके अनुप्रयोगों का परिचय (1st ed.). Cambridge University Press. ISBN 0-521-30706-6.