सामान्यीकृत क्रमपरिवर्तन मैट्रिक्स: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (8 revisions imported from alpha:सामान्यीकृत_क्रमपरिवर्तन_मैट्रिक्स) |
(No difference)
|
Revision as of 11:26, 16 August 2023
गणित में, सामान्यीकृत क्रमपरिवर्तन आव्यूह (या मोनोमियल आव्यूह ) आव्यूह (गणित) है जिसमें क्रमपरिवर्तन आव्यूह के समान गैर-शून्य प्रतिरूप होता है, अर्थात प्रत्येक पंक्ति और प्रत्येक स्तंभ में बिल्कुल गैर-शून्य प्रविष्टि होती है। क्रमपरिवर्तन आव्यूह के विपरीत, जहां गैर-शून्य प्रविष्टि 1 होनी चाहिए, सामान्यीकृत क्रमपरिवर्तन आव्यूह में गैर-शून्य प्रविष्टि कोई भी गैर-शून्य मान हो सकती है। सामान्यीकृत क्रमपरिवर्तन आव्यूह का उदाहरण है
संरचना
एक व्युत्क्रमणीय आव्यूह A सामान्यीकृत क्रमपरिवर्तन आव्यूह है यदि और केवल यदि इसे व्युत्क्रमणीय विकर्ण आव्यूह D और (अंतर्निहित व्युत्क्रमणीय आव्यूह ) क्रमपरिवर्तन आव्यूह P के उत्पाद के रूप में लिखा जा सकता है: अथार्त ,
समूह संरचना
क्षेत्र (गणित) F में प्रविष्टियों के साथ n × n सामान्यीकृत क्रमपरिवर्तन आव्यूह का समुच्चय (गणित) सामान्य रैखिक समूह GL(n, F) का उपसमूह बनाता है, जिसमें व्युत्क्रम आव्यूह विकर्ण आव्यूह का समूह Δ(n, F) होता है। ) सामान्य उपसमूह बनाता है। वास्तव में, सामान्यीकृत क्रमपरिवर्तन आव्यूह विकर्ण आव्यूह के सामान्यीकरणकर्ता हैं, जिसका अर्थ है कि सामान्यीकृत क्रमपरिवर्तन आव्यूह GL(n, F) का सबसे बड़ा उपसमूह हैं जिसमें विकर्ण आव्यूह सामान्य हैं।
सामान्यीकृत क्रमपरिवर्तन आव्यूह का अमूर्त समूह F× और Sn.का पुष्प उत्पाद है सीधे रूप से इसका अर्थ यह है कि यह सममित समूह Sn द्वारा Δ(n, F) का अर्धप्रत्यक्ष उत्पाद है:
- Sn ⋉ Δ(n, F),
जहां Sn निर्देशांक और विकर्ण आव्यूहों को क्रमपरिवर्तित करके कार्य करता है Δ(n, F) n-गुना उत्पाद (F×)n के लिए समूह समरूपता है
स्पष्ट होने के लिए, सामान्यीकृत क्रमपरिवर्तन आव्यूह इस अमूर्त पुष्प उत्पाद का (निष्ठावान) रैखिक प्रतिनिधित्व है: आव्यूह के उपसमूह के रूप में अमूर्त समूह का अनुभव होता है।
उपसमूह
- उपसमूह जहां सभी प्रविष्टियां 1 हैं, बिल्कुल क्रमपरिवर्तन आव्यूह है, जो सममित समूह के लिए समरूपी है।
- वह उपसमूह जहां सभी प्रविष्टियाँ ±1 हैं, हस्ताक्षरित क्रमपरिवर्तन आव्यूह है, जो हाइपरऑक्टाहेड्रल समूह है।
- वह उपसमूह जहां प्रविष्टियाँ एकता की मूल हैं सामान्यीकृत सममित समूह के लिए समरूपी है।
- विकर्ण आव्यूहों का उपसमूह एबेलियन समूह, सामान्य और अधिकतम एबेलियन उपसमूह है। भागफल समूह सममित समूह है, और यह निर्माण वास्तव में सामान्य रैखिक समूह का वेइल समूह है: विकर्ण आव्यूह सामान्य रैखिक समूह में अधिकतम टोरस हैं (और अपने स्वयं के केंद्रीकरणकर्ता हैं), सामान्यीकृत क्रमपरिवर्तन आव्यूह सामान्यीकरणकर्ता हैं इस टोरस का, और भागफल का, वेइल समूह है.
गुण
- यदि गैर-एकवचन आव्यूह और इसका व्युत्क्रम दोनों गैर-ऋणात्मक आव्यूह हैं (अर्थात गैर-ऋणात्मक प्रविष्टियों वाले आव्यूह), तो आव्यूह सामान्यीकृत क्रमपरिवर्तन आव्यूह है।
- सामान्यीकृत क्रमपरिवर्तन आव्यूह का निर्धारक द्वारा दिया गया है
- जहाँ से जुड़े क्रमपरिवर्तन का संकेत है और , के विकर्ण अवयव हैं।
सामान्यीकरण
प्रविष्टियों को किसी क्षेत्र के अतिरिक्त वलय (गणित) में रखने की अनुमति देकर कोई और अधिक सामान्यीकरण कर सकता है। उस स्थिति में यदि गैर-शून्य प्रविष्टियों को वलय में इकाई (वलय सिद्धांत) होना आवश्यक है, तो व्यक्ति को फिर से समूह प्राप्त होता है। दूसरी ओर, यदि गैर-शून्य प्रविष्टियों को केवल गैर-शून्य होना आवश्यक है, किंतु आवश्यक रूप से व्युत्क्रम नहीं है, तो आव्यूह का यह समुच्चय इसके अतिरिक्त अर्धसमूह बनाता है।
कोई योजनाबद्ध रूप से गैर-शून्य प्रविष्टियों को समूह जी में असत्य बोलने की अनुमति भी दे सकता है, इस समझ के साथ कि आव्यूह गुणन में केवल समूह अवयवो की जोड़ी को गुणा करना सम्मिलित करना होगा, जिसमे समूह के अवयवो को जोड़ना नहीं होता है यह संकेतन का दुरुपयोग है, क्योंकि गुणा किए जाने वाले आव्यूह के अवयव को गुणा और जोड़ की अनुमति देनी चाहिए, किंतु (औपचारिक रूप से सही) अमूर्त समूह (सममित समूह द्वारा समूह G का पुष्पांजलि उत्पाद) के लिए यह विचारोत्तेजक धारणा है ।
हस्ताक्षरित क्रमपरिवर्तन समूह
एक हस्ताक्षरित क्रमपरिवर्तन आव्यूह सामान्यीकृत क्रमपरिवर्तन आव्यूह है जिसकी गैर-शून्य प्रविष्टियाँ ±1 हैं, और पूर्णांक व्युत्क्रम के साथ पूर्णांक सामान्यीकृत क्रमपरिवर्तन आव्यूह हैं।
गुण
- यह कॉक्सेटर समूह है और इसका क्रम है।
- यह अतिविम का समरूपता समूह और (द्वैत) क्रॉस-पॉलीटोप का है।
- इसके सूचकांक 2 मेट्रिसेस का उपसमूह, उनके अंतर्निहित (अहस्ताक्षरित) क्रमपरिवर्तन के समान निर्धारक के साथ कॉक्सेटर समूह है और डेमीहाइपरक्यूब का समरूपता समूह है।
- यह ऑर्थोगोनल समूह का उपसमूह है।
अनुप्रयोग
एकपदी निरूपण
एकपदी निरूपण के संदर्भ में प्रतिनिधित्व सिद्धांत में एकपदी आव्यूह पाए जाते हैं। समूह G का एकपदी निरूपण रैखिक निरूपण है यदि ρ : G → GL(n, F) G का (यहाँ F प्रतिनिधित्व का परिभाषित क्षेत्र है) जैसे कि छवि (गणित) ρ(G) एकपदी आव्यूह के समूह का उपसमूह है।
संदर्भ
- Joyner, David (2008). Adventures in group theory. Rubik's cube, Merlin's machine, and other mathematical toys (2nd updated and revised ed.). Baltimore, MD: Johns Hopkins University Press. ISBN 978-0-8018-9012-3. Zbl 1221.00013.