निम्न हाइड्रोजन एनीलिंग: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Heat treatment in metallurgy}} | {{Short description|Heat treatment in metallurgy}} | ||
निम्न हाइड्रोजन एनीलन जिसे प्रायः "बेकिंग" के रूप में जाना जाता है, हाइड्रोजन उत्सर्जन को रोकने के लिए किसी सामग्री में हाइड्रोजन की कमी या उन्मूलन के लिए धातु विज्ञान में | निम्न हाइड्रोजन एनीलन जिसे प्रायः "बेकिंग" के रूप में जाना जाता है, हाइड्रोजन उत्सर्जन को रोकने के लिए किसी सामग्री में हाइड्रोजन की कमी या उन्मूलन के लिए धातु विज्ञान में ऊष्मा का यह एक उपचार है। हाइड्रोजन उत्सर्जन धातुओं, विशेष रूप से स्टील की एक हाइड्रोजन-प्रेरित दरार है जिसके परिणामस्वरूप कम तापमान पर प्लास्टिसिटी, लचीलापन और फ्रैक्चर कठोरता जैसे पदावनत यांत्रिक गुण होते हैं। निम्न हाइड्रोजन एनीलिंग को डी-एम्ब्रिटलमेंट प्रक्रिया कहा जाता है। हाइड्रोजन प्रवेश के लिए अवरोध प्रदान करने के लिए जस्ता के साथ सामग्री को इलेक्ट्रोप्लेटिंग जैसे विकल्पों की तुलना में निम्न हाइड्रोजन एनीलिंग एक प्रभावी तरीका है जिसके परिणामस्वरूप कोटिंग दोष होते हैं।<ref>{{Cite journal|date=2008-04-01|title=अल्ट्रा हाई स्ट्रेंथ स्टील्स के हाइड्रोजन भंगुरता और पुनः भंगुरीकरण पर बलि कोटिंग्स का प्रभाव|url=https://www.sciencedirect.com/science/article/abs/pii/S0010938X07003277|journal=Corrosion Science|language=en|volume=50|issue=4|pages=1066–1079|doi=10.1016/j.corsci.2007.11.023|issn=0010-938X|last1=Figueroa |first1=D. |last2=Robinson |first2=M.J. }}</ref>ठोस के बड़े हिस्से में प्रवेशित हाइड्रोजन की तुलना में सतह के लिए हाइड्रोजन के भंगुर होने का अंतर्निहित तंत्र अलग होता है। अध्ययनों से पता चला है कि 200 डिग्री सेल्सियस पर एनीलिंग आंतरिक हाइड्रोजन के कारण होने वाले हाइड्रोजन उत्सर्जन को कमजोर करता है लेकिन सतह-अवशोषित हाइड्रोजन पर इसका बहुत कम प्रभाव पड़ता है। 200 डिग्री सेल्सियस पर, हाइड्रोजन परमाणु लोहे और आंशिक स्टेनलेस स्टील से फैल सकते हैं और यह प्रक्रिया के लिए आवश्यक न्यूनतम तापमान है।<ref>{{Cite journal|date=2008-10-01|title=धातुओं की हाइड्रोजन-संबंधी विफलता पर जाली दोष हावी हैं|url=https://www.sciencedirect.com/science/article/abs/pii/S1359645408004655|journal=Acta Materialia|language=en|volume=56|issue=18|pages=5158–5167|doi=10.1016/j.actamat.2008.06.031|issn=1359-6454|last1=Takai |first1=K. |last2=Shoda |first2=H. |last3=Suzuki |first3=H. |last4=Nagumo |first4=M. |bibcode=2008AcMat..56.5158T }}</ref> सटीक तंत्र या इसके प्रभावों को पूरी तरह से समझा नहीं गया है क्योंकि यह भी अनुमान लगाया गया है कि 200 डिग्री सेल्सियस ठोस में रिक्तता को खत्म करने की अनुमति देता है जो इसके यांत्रिक गुणों को भी प्रभावित कर सकता है। | ||
===प्रक्रिया विवरण=== | ===प्रक्रिया विवरण=== | ||
Line 7: | Line 7: | ||
===यांत्रिक गुणों पर प्रभाव=== | ===यांत्रिक गुणों पर प्रभाव=== | ||
झोउ एट अल. अनएनल्ड X80 पाइपलाइन स्टील के स्ट्रेस-स्ट्रेन कर्व्स और उन नमूनों की तुलना दिखाई गयी जिन्हें 12 घंटे के लिए 200 डिग्री सेल्सियस पर एनील किया गया था।<ref>{{Cite journal|last=Zhou|first=Chengshuang|date=2019|title=Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel|url=https://www.sciencedirect.com/science/article/pii/S0360319919316945|journal=International Journal of Hydrogen Energy|volume=44|issue=40 |pages=22547–22558|doi=10.1016/j.ijhydene.2019.04.239 |s2cid=181515850 }}</ref> | झोउ एट अल. अनएनल्ड X80 पाइपलाइन स्टील के स्ट्रेस-स्ट्रेन कर्व्स और उन नमूनों की तुलना दिखाई गयी जिन्हें 12 घंटे के लिए 200 डिग्री सेल्सियस पर एनील किया गया था।<ref>{{Cite journal|last=Zhou|first=Chengshuang|date=2019|title=Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel|url=https://www.sciencedirect.com/science/article/pii/S0360319919316945|journal=International Journal of Hydrogen Energy|volume=44|issue=40 |pages=22547–22558|doi=10.1016/j.ijhydene.2019.04.239 |s2cid=181515850 }}</ref> तनाव-खिंचाव वक्र महत्वपूर्ण रूप से बदलता है। एनीलिंग के बाद उपज घटना तनाव-खिंचाव वक्र में दिखाई दी। इसे निम्नलिखित तरीके से समझाया जा सकता है। 200 डिग्री सेल्सियस पर, कार्बन परमाणुओं में कॉटरेल वायुमंडल बनाने वाले अव्यवस्थाओं के अंतरालीय स्थलों में फैलने के लिए पर्याप्त ऊर्जा होती है। यह जगह-जगह अव्यवस्थाओं को दूर करता है और घनत्व को कम करता है। यह अव्यवस्थाओं को उनकी जगह पर पिन कर देता है और गतिशील अव्यवस्थाओं के घनत्व को कम कर देता है। अघोषित नमूनों में, चल अव्यवस्थाओं का बड़ा घनत्व सक्रिय होता है और उपज नहीं होती है क्योंकि अव्यवस्था घनत्व में कोई बड़ा बदलाव नहीं होता है। उपज शक्ति में लगभग 10% की वृद्धि हुई और बढ़ाव में लगभग 20% की कमी आई। अंत में, परीक्षण वातावरण के आधार पर, यह निष्कर्ष निकाला जा सकता है कि 200 डिग्री सेल्सियस पर एनीलिंग करने से आंतरिक हाइड्रोजन उत्सर्जन कम हो जाता है, लेकिन सतह द्वारा अवशोषित हाइड्रोजन के कारण होने वाली हाइड्रोजन उत्सर्जन संवेदनशीलता के लिए यह अप्रभावी है। | ||
===जाली पर प्रभाव=== | ===जाली पर प्रभाव=== |
Revision as of 09:23, 11 August 2023
निम्न हाइड्रोजन एनीलन जिसे प्रायः "बेकिंग" के रूप में जाना जाता है, हाइड्रोजन उत्सर्जन को रोकने के लिए किसी सामग्री में हाइड्रोजन की कमी या उन्मूलन के लिए धातु विज्ञान में ऊष्मा का यह एक उपचार है। हाइड्रोजन उत्सर्जन धातुओं, विशेष रूप से स्टील की एक हाइड्रोजन-प्रेरित दरार है जिसके परिणामस्वरूप कम तापमान पर प्लास्टिसिटी, लचीलापन और फ्रैक्चर कठोरता जैसे पदावनत यांत्रिक गुण होते हैं। निम्न हाइड्रोजन एनीलिंग को डी-एम्ब्रिटलमेंट प्रक्रिया कहा जाता है। हाइड्रोजन प्रवेश के लिए अवरोध प्रदान करने के लिए जस्ता के साथ सामग्री को इलेक्ट्रोप्लेटिंग जैसे विकल्पों की तुलना में निम्न हाइड्रोजन एनीलिंग एक प्रभावी तरीका है जिसके परिणामस्वरूप कोटिंग दोष होते हैं।[1]ठोस के बड़े हिस्से में प्रवेशित हाइड्रोजन की तुलना में सतह के लिए हाइड्रोजन के भंगुर होने का अंतर्निहित तंत्र अलग होता है। अध्ययनों से पता चला है कि 200 डिग्री सेल्सियस पर एनीलिंग आंतरिक हाइड्रोजन के कारण होने वाले हाइड्रोजन उत्सर्जन को कमजोर करता है लेकिन सतह-अवशोषित हाइड्रोजन पर इसका बहुत कम प्रभाव पड़ता है। 200 डिग्री सेल्सियस पर, हाइड्रोजन परमाणु लोहे और आंशिक स्टेनलेस स्टील से फैल सकते हैं और यह प्रक्रिया के लिए आवश्यक न्यूनतम तापमान है।[2] सटीक तंत्र या इसके प्रभावों को पूरी तरह से समझा नहीं गया है क्योंकि यह भी अनुमान लगाया गया है कि 200 डिग्री सेल्सियस ठोस में रिक्तता को खत्म करने की अनुमति देता है जो इसके यांत्रिक गुणों को भी प्रभावित कर सकता है।
प्रक्रिया विवरण
सामग्री को 200 डिग्री सेल्सियस और 300 डिग्री सेल्सियस के बीच तापमान पर कई घंटों तक हाइड्रोजन एनीलिंग ओवन में रखा जाता है। संलग्न हाइड्रोजन परमाणु, जो हाइड्रोजन भंगुरता के लिए जाने जाते हैं[3] प्रवाह द्वारा हटा दिए जाते हैं। इस विधि का उपयोग मुख्य रूप से वेल्डिंग, कोटिंग प्रक्रिया या भागों के गैल्वनाइजिंग के तुरंत बाद किया जाता है।
यांत्रिक गुणों पर प्रभाव
झोउ एट अल. अनएनल्ड X80 पाइपलाइन स्टील के स्ट्रेस-स्ट्रेन कर्व्स और उन नमूनों की तुलना दिखाई गयी जिन्हें 12 घंटे के लिए 200 डिग्री सेल्सियस पर एनील किया गया था।[4] तनाव-खिंचाव वक्र महत्वपूर्ण रूप से बदलता है। एनीलिंग के बाद उपज घटना तनाव-खिंचाव वक्र में दिखाई दी। इसे निम्नलिखित तरीके से समझाया जा सकता है। 200 डिग्री सेल्सियस पर, कार्बन परमाणुओं में कॉटरेल वायुमंडल बनाने वाले अव्यवस्थाओं के अंतरालीय स्थलों में फैलने के लिए पर्याप्त ऊर्जा होती है। यह जगह-जगह अव्यवस्थाओं को दूर करता है और घनत्व को कम करता है। यह अव्यवस्थाओं को उनकी जगह पर पिन कर देता है और गतिशील अव्यवस्थाओं के घनत्व को कम कर देता है। अघोषित नमूनों में, चल अव्यवस्थाओं का बड़ा घनत्व सक्रिय होता है और उपज नहीं होती है क्योंकि अव्यवस्था घनत्व में कोई बड़ा बदलाव नहीं होता है। उपज शक्ति में लगभग 10% की वृद्धि हुई और बढ़ाव में लगभग 20% की कमी आई। अंत में, परीक्षण वातावरण के आधार पर, यह निष्कर्ष निकाला जा सकता है कि 200 डिग्री सेल्सियस पर एनीलिंग करने से आंतरिक हाइड्रोजन उत्सर्जन कम हो जाता है, लेकिन सतह द्वारा अवशोषित हाइड्रोजन के कारण होने वाली हाइड्रोजन उत्सर्जन संवेदनशीलता के लिए यह अप्रभावी है।
जाली पर प्रभाव
जाली दोषों के प्रकार फंसे हुए हाइड्रोजन को छोड़ने के लिए सक्रियण ऊर्जा से संबंधित हैं। हाइड्रोजन परमाणु दोषों से बच सकते हैं और जाली अंतरालीय में जा सकते हैं। इस प्रकार की साइटों के बीच प्रसार एक गतिशील संतुलन तक पहुंच सकता है।[5]
यह भी देखें
संदर्भ
- ↑ Figueroa, D.; Robinson, M.J. (2008-04-01). "अल्ट्रा हाई स्ट्रेंथ स्टील्स के हाइड्रोजन भंगुरता और पुनः भंगुरीकरण पर बलि कोटिंग्स का प्रभाव". Corrosion Science (in English). 50 (4): 1066–1079. doi:10.1016/j.corsci.2007.11.023. ISSN 0010-938X.
- ↑ Takai, K.; Shoda, H.; Suzuki, H.; Nagumo, M. (2008-10-01). "धातुओं की हाइड्रोजन-संबंधी विफलता पर जाली दोष हावी हैं". Acta Materialia (in English). 56 (18): 5158–5167. Bibcode:2008AcMat..56.5158T. doi:10.1016/j.actamat.2008.06.031. ISSN 1359-6454.
- ↑ Effect of temperature on the susceptibility of VT6ch alloy to hydrogen embrittlement
- ↑ Zhou, Chengshuang (2019). "Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel". International Journal of Hydrogen Energy. 44 (40): 22547–22558. doi:10.1016/j.ijhydene.2019.04.239. S2CID 181515850.
- ↑ Liu, Qian; Atrens, Andrej (2015-07-01). "Reversible hydrogen trapping in a 3.5NiCrMoV medium strength steel". Corrosion Science (in English). 96: 112–120. doi:10.1016/j.corsci.2015.04.011. ISSN 0010-938X.