पीयरल्स प्रतिस्थापन: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 181: Line 181:
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
[[Category: इलेक्ट्रॉनिक संरचना विधियाँ]] [[Category: इलेक्ट्रॉनिक बैंड संरचनाएँ]]


[[Category: Machine Translated Page]]
[[Category:Created On 08/08/2023]]
[[Category:Created On 08/08/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:इलेक्ट्रॉनिक बैंड संरचनाएँ]]
[[Category:इलेक्ट्रॉनिक संरचना विधियाँ]]

Latest revision as of 09:11, 22 August 2023

पीयरल्स प्रतिस्थापन विधि, जिसका नाम रुडोल्फ पीयरल्स के मूल कार्य के नाम पर रखा गया है[1] धीरे-धीरे बदलती चुंबकीय सदिश क्षमता की उपस्थिति में दृढ़ बंधन (टाइट बाइंडिंग) इलेक्ट्रॉनों का वर्णन करने के लिए एक व्यापक रूप से नियोजित अनुमान है।[2]


बाहरी चुंबकीय सदिश क्षमता की उपस्थिति में, अनुवाद ऑपरेटर, जो तंग-बाध्यकारी दृढ़ में हैमिल्टनियन के गतिज भाग का निर्माण करते हैं, बस हैं

और दूसरे परिमाणीकरण सूत्रीकरण में

चरणों को इस प्रकार परिभाषित किया गया है

गुण

  1. प्रति प्लैकेट फ्लक्स क्वांटा की संख्या चरण कारक के लैटिस कर्ल से संबंधित है,
    और लैटिस के माध्यम से कुल प्रवाह है साथ गाऊसी इकाइयों में चुंबकीय प्रवाह क्वांटम होना।
  2. फ्लक्स क्वांटा प्रति प्लैकेट एकल कण अवस्था के संचित चरण से संबंधित है, एक पट्टिका के आसपास:

औचित्य

यहां हम पियरल्स प्रतिस्थापन की तीन व्युत्पत्तियां देते हैं, जिनमें से प्रत्येक क्वांटम यांत्रिकी सिद्धांत के एक अलग सूत्रीकरण पर आधारित है।

स्वयंसिद्ध दृष्टिकोण

यहां हम पीयरल्स प्रतिस्थापन की एक सरल व्युत्पत्ति दे रहे हैं, जो द फेनमैन लेक्चर्स (खंड III, अध्याय 21) पर आधारित है।[3] यह व्युत्पत्ति बताती है कि चुंबकीय क्षेत्र को हॉपिंग शर्तों में एक चरण जोड़कर टाइट-बाइंडिंग मॉडल में शामिल किया गया है और दिखाया गया है कि यह सातत्य हैमिल्टनियन के अनुरूप है। इस प्रकार, हमारा प्रारंभिक बिंदु हॉफस्टैटर हैमिल्टनियन है:[2]

अनुवाद संचालक इसके जनरेटर का उपयोग करके स्पष्ट रूप से लिखा जा सकता है, जो कि गति ऑपरेटर है। इस प्रतिनिधित्व के तहत इसे दूसरे क्रम तक विस्तारित करना आसान है,

और एक 2डी लैटिस में . इसके बाद, हम चरण कारकों के दूसरे क्रम तक विस्तार करते हैं, यह मानते हुए कि सदिश क्षमता एक लैटिस रिक्ति (जिसे छोटा माना जाता है) पर महत्वपूर्ण रूप से भिन्न नहीं होती है।

इन विस्तारों को हैमिल्टनियन यील्ड के प्रासंगिक हिस्से में प्रतिस्थापित करना

2डी मामले में अंतिम परिणाम को सामान्यीकृत करते हुए, हम सातत्य सीमा पर हॉफस्टैटर हैमिल्टनियन पर पहुंचते हैं:

जहाँ प्रभावी द्रव्यमान है और .

अर्ध-शास्त्रीय दृष्टिकोण

यहां हम दिखाते हैं कि पीयरल्स चरण कारक गतिशील शब्द के कारण चुंबकीय क्षेत्र में एक इलेक्ट्रॉन के प्रसारक से उत्पन्न होता है लैग्रेंजियन में दिखाई दे रहा है। पथ अभिन्न सूत्रीकरण में, जो शास्त्रीय यांत्रिकी के क्रिया सिद्धांत को सामान्यीकृत करता है, साइट से संक्रमण आयाम समय पर साइट को समय पर द्वारा दिया गया है

जहाँ एकीकरण ऑपरेटर, से सभी संभावित पथों के योग को दर्शाता है को और शास्त्रीय क्रिया (भौतिकी) है, जो एक कार्यात्मक है जो एक प्रक्षेपवक्र को अपने तर्क के रूप में लेती है। हम उपयोग करते हैं अंतबिंदुओं के साथ एक प्रक्षेपवक्र को दर्शाने के लिए . प्रणाली के लैग्रेंजियन को इस प्रकार लिखा जा सकता है

जहाँ चुंबकीय क्षेत्र की अनुपस्थिति में लैग्रेंजियन है। संबंधित क्रिया पढ़ती है

अब, यह मानते हुए कि केवल एक ही मार्ग दृढ़ता में योगदान देता है, हमारे पास है

इसलिए, एक चुंबकीय क्षेत्र के अधीन एक इलेक्ट्रॉन का संक्रमण आयाम एक चरण में चुंबकीय क्षेत्र की अनुपस्थिति में होता है।

एक और व्युत्पत्ति

हैमिल्टनियन द्वारा दिया गया है

जहाँ क्रिस्टल लैटिस के कारण संभावित परिदृश्य है। बलोच प्रमेय का दावा है कि समस्या का समाधान:, बलोच योग प्रपत्र में मांगा जाना है

जहाँ इकाई सेल्स की संख्या है, और वानियर फलन के रूप में जाने जाते हैं। संगत आइगेन मान , जो क्रिस्टल गति के आधार पर बैंड बनाते हैं , आव्यूह तत्व की गणना करके प्राप्त किए जाते हैं

और अंततः सामग्री-निर्भर होपिंग इंटीग्रल्स पर निर्भर होते हैं

चुंबकीय क्षेत्र की उपस्थिति में हैमिल्टनियन में परिवर्तन होता है

जहाँ कण का आवेश है. इसमें संशोधन करने के लिए, वानियर फलन को बदलने पर विचार करें

जहाँ . यह नई बलोच तरंग को कार्यशील बनाता है

समय पर पूर्ण हैमिल्टनियन के मूल अवस्था में , पहले जैसी ही ऊर्जा के साथ है। इसे देखने के लिए हम सबसे पहले प्रयोग करते हैं लिखना

फिर जब हम अर्ध-संतुलन में होपिंग इंटीग्रल की गणना करते हैं (यह मानते हुए कि सदिश क्षमता धीरे-धीरे बदलती है)

जहाँ हमने परिभाषित किया है , तीन स्थिति तर्कों द्वारा बनाए गए त्रिभुज के माध्यम से प्रवाह है। चूंकि हम मान लेते हैं लैटिस पैमाने पर लगभग एक समान है[4]- वह पैमाना जिस पर वानियर अवस्था को पदों पर स्थानीयकृत किया जाता है - हम अनुमान लगा सकते हैं , वांछित परिणाम दे रहा है,

इसलिए, उठाए गए चरण कारक के अलावा, आव्यूह तत्व चुंबकीय क्षेत्र के बिना मामले के समान हैं, जिसे पीयरल्स चरण कारक दर्शाया गया है। यह अत्यधिक सुविधाजनक है, तब से हमें चुंबकीय क्षेत्र मान की परवाह किए बिना समान सामग्री मापदंडों का उपयोग करने को मिलता है, और संबंधित चरण को ध्यान में रखना संगणनात्मक रूप से तुच्छ है। इलेक्ट्रॉनों के लिए () यह हॉपिंग शब्द को प्रतिस्थापित करने के समान है साथ [4][5][6][7]

संदर्भ

  1. Peierls, R (1933). "On the theory of diamagnetism of conduction electrons". Z. Phys. 80 (11–12): 763–791. Bibcode:1933ZPhy...80..763P. doi:10.1007/bf01342591. S2CID 119930820.
  2. 2.0 2.1 Hofstadter, Douglas R. (Sep 1976). "Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields". Phys. Rev. B. 14 (6): 2239–2249. Bibcode:1976PhRvB..14.2239H. doi:10.1103/PhysRevB.14.2239.
  3. The Feynman Lectures on Physics Vol. III Ch. 21: The Schrödinger Equation in a Classical Context: A Seminar on Superconductivity
  4. 4.0 4.1 Luttinger, J. M. (Nov 1951). "The Effect of a Magnetic Field on Electrons in a Periodic Potential". Phys. Rev. 84 (4): 814–817. Bibcode:1951PhRv...84..814L. doi:10.1103/PhysRev.84.814.
  5. Kohn, Walter (Sep 1959). "Theory of Bloch Electrons in a Magnetic Field: The Effective Hamiltonian". Phys. Rev. 115 (6): 1460–1478. Bibcode:1959PhRv..115.1460K. doi:10.1103/PhysRev.115.1460.
  6. Blount, E. I. (Jun 1962). "Bloch Electrons in a Magnetic Field". Phys. Rev. 126 (5): 1636–1653. Bibcode:1962PhRv..126.1636B. doi:10.1103/PhysRev.126.1636.
  7. Wannier, Gregory H. (Oct 1962). "Dynamics of Band Electrons in Electric and Magnetic Fields". Rev. Mod. Phys. 34 (4): 645–655. Bibcode:1962RvMP...34..645W. doi:10.1103/RevModPhys.34.645.