नोबल सेलुलर ऑटोमेटा: Difference between revisions
(Created page with "{{Short description|Type of cellular automaton}} File:Lambda-G.png|right|thumb|λ<sub>G</sub>, नोबिली सेलुलर ऑटोमेटा में एक...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Type of cellular automaton}} | {{Short description|Type of cellular automaton}} | ||
[[File:Lambda-G.png|right|thumb|λ<sub>G</sub>, नोबिली सेलुलर ऑटोमेटा में | [[File:Lambda-G.png|right|thumb|λ<sub>G</sub>, नोबिली सेलुलर ऑटोमेटा में न्यूनतम स्व-प्रतिकृति कॉन्फ़िगरेशन]]नोबिली सेलुलर ऑटोमेटा (एनसीए) [[वॉन न्यूमैन सेलुलर ऑटोमेटा]] (वीएनसीए) का रूप है, जिसमें अतिरिक्त राज्य मेमोरी के साधन और सिग्नल के हस्तक्षेप-मुक्त क्रॉसिंग प्रदान करते हैं। नोबिली सेलुलर ऑटोमेटा इटली के पडोवा में पडोवा विश्वविद्यालय में भौतिकी के प्रोफेसर रेनाटो नोबिली का आविष्कार है। वॉन न्यूमैन ने विशेष रूप से सिग्नल को पार करने के लिए समर्पित राज्यों के उपयोग को बाहर रखा। | ||
संगम अवस्था को बदल दिया जाता है, ताकि यह | संगम अवस्था को बदल दिया जाता है, ताकि यह सिग्नल क्रॉसिंग अंग के रूप में कार्य करे यदि वास्तव में दो सिग्नल पथ घटनाग्रस्त हैं (वे संगम अवस्था में प्रवेश करते हैं और छोड़ते हैं), या यदि केवल इनपुट मौजूद हैं तो यह स्मृति अंग के रूप में कार्य करता है। | ||
वॉन न्यूमैन सेलुलर ऑटोमेटा के राज्य सेट में इन परिवर्तनों का लाभ यह है कि सिग्नल क्रॉसिंग बहुत आसान हो जाती है, कॉन्फ़िगरेशन वॉन न्यूमैन सेलुलर ऑटोमेटा के संबंधित कॉन्फ़िगरेशन से थोड़ा छोटा होता है, और कम्प्यूटेशनल थ्रूपुट बढ़ जाता है। | वॉन न्यूमैन सेलुलर ऑटोमेटा के राज्य सेट में इन परिवर्तनों का लाभ यह है कि सिग्नल क्रॉसिंग बहुत आसान हो जाती है, कॉन्फ़िगरेशन वॉन न्यूमैन सेलुलर ऑटोमेटा के संबंधित कॉन्फ़िगरेशन से थोड़ा छोटा होता है, और कम्प्यूटेशनल थ्रूपुट बढ़ जाता है। | ||
Line 14: | Line 14: | ||
==एनसीए में सिग्नल क्रॉसिंग== | ==एनसीए में सिग्नल क्रॉसिंग== | ||
नोबिली सेलुलर ऑटोमेटन में, | नोबिली सेलुलर ऑटोमेटन में, सिग्नल क्रॉसिंग ऑर्गन में एकल संगम सेल होता है, जिसमें दो लंबवत इनपुट पथ और दो लंबवत आउटपुट पथ होते हैं। काफी हद तक कम आकार (वीएनसीए क्रॉसिंग अंगों में से किसी की तुलना में) के कारण, एनसीए में स्व-प्रतिकृति मशीनें बहुत अधिक कॉम्पैक्ट हैं। उदाहरण के लिए, अब तक का सबसे छोटा प्रतिकृतिक, | ||
λ<sub>G</sub>, में केवल 485 दैहिक कोशिकाएँ शामिल हैं। | λ<sub>G</sub>, में केवल 485 दैहिक कोशिकाएँ शामिल हैं। | ||
==vNCA में मेमोरी स्टोरेज== | ==vNCA में मेमोरी स्टोरेज== | ||
वीएनसीए में मेमोरी को स्टोर करना कई तरीकों से किया जा सकता है। इनमें से | वीएनसीए में मेमोरी को स्टोर करना कई तरीकों से किया जा सकता है। इनमें से (इलेक्ट्रॉनिक विधि) ओटीएस कोशिकाओं का लूप बनाना है जिसके चारों ओर उत्तेजित नाड़ी घूम रही है। अब तक का सबसे आम तरीका (इलेक्ट्रो-मैकेनिकल विधि) गेट के रूप में कार्य करने के लिए सामान्य ट्रांसमिशन राज्य को बनाने और हटाने के लिए विशेष ट्रांसमिशन राज्य का उपयोग करना है। थोड़े से संशोधनों से ढेर सारे अलग-अलग गेट मिल सकते हैं, जिनमें कुंडी, पल्स डिवाइडर और वन-टाइम गेट शामिल हैं। | ||
==एनसीए में मेमोरी स्टोरेज== | ==एनसीए में मेमोरी स्टोरेज== | ||
नोबिली के सेल्युलर ऑटोमेटन में यह कार्य भी सरल हो गया है। बिना आउटपुट वाली | नोबिली के सेल्युलर ऑटोमेटन में यह कार्य भी सरल हो गया है। बिना आउटपुट वाली संगम कोशिका उत्तेजना की नाड़ी को तब तक 'रखती' रहती है जब तक कोई आउटपुट नहीं बन जाता। λ के आरेख में<sub>G</sub> ऊपर, उत्तेजित संगम कोशिका नारंगी रंग में प्रदर्शित होती है। यह इस स्थिति में तब तक रहेगा जब तक कि निकटवर्ती ओटीएस सेल नहीं बन जाता, जिस बिंदु पर सूचना अगले संगम सेल में प्रवाहित होगी। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 22:06, 10 August 2023
नोबिली सेलुलर ऑटोमेटा (एनसीए) वॉन न्यूमैन सेलुलर ऑटोमेटा (वीएनसीए) का रूप है, जिसमें अतिरिक्त राज्य मेमोरी के साधन और सिग्नल के हस्तक्षेप-मुक्त क्रॉसिंग प्रदान करते हैं। नोबिली सेलुलर ऑटोमेटा इटली के पडोवा में पडोवा विश्वविद्यालय में भौतिकी के प्रोफेसर रेनाटो नोबिली का आविष्कार है। वॉन न्यूमैन ने विशेष रूप से सिग्नल को पार करने के लिए समर्पित राज्यों के उपयोग को बाहर रखा।
संगम अवस्था को बदल दिया जाता है, ताकि यह सिग्नल क्रॉसिंग अंग के रूप में कार्य करे यदि वास्तव में दो सिग्नल पथ घटनाग्रस्त हैं (वे संगम अवस्था में प्रवेश करते हैं और छोड़ते हैं), या यदि केवल इनपुट मौजूद हैं तो यह स्मृति अंग के रूप में कार्य करता है।
वॉन न्यूमैन सेलुलर ऑटोमेटा के राज्य सेट में इन परिवर्तनों का लाभ यह है कि सिग्नल क्रॉसिंग बहुत आसान हो जाती है, कॉन्फ़िगरेशन वॉन न्यूमैन सेलुलर ऑटोमेटा के संबंधित कॉन्फ़िगरेशन से थोड़ा छोटा होता है, और कम्प्यूटेशनल थ्रूपुट बढ़ जाता है।
वीएनसीए में सिग्नल क्रॉसिंग
वॉन न्यूमैन के मूल सेलुलर ऑटोमेटन में, संकेतों को पार करना अधिक कठिन है। सबसे व्यापक रूप से उपयोग किए जाने वाले सिग्नल क्रॉसिंग अंग कोडित चैनल (वॉन न्यूमैन द्वारा स्वयं तैयार किए गए), गोर्मन के वास्तविक समय क्रॉसिंग अंग और मुखोपाध्याय क्रॉसिंग अंग हैं। कोडित चैनल केवल व्यक्तिगत पल्स को पार कर सकता है; अन्य बिना किसी हस्तक्षेप के पूरे पैकेट को पार करने में सक्षम हैं, नोबिली के सेलुलर ऑटोमेटन में क्रॉसिंग अंग के अनुरूप। मुखोपाध्याय क्रॉसिंग ऑर्गन में दर्शाई गई व्यवस्था के अनुसार तीन एक्सओआर गेट शामिल हैं।
एनसीए में सिग्नल क्रॉसिंग
नोबिली सेलुलर ऑटोमेटन में, सिग्नल क्रॉसिंग ऑर्गन में एकल संगम सेल होता है, जिसमें दो लंबवत इनपुट पथ और दो लंबवत आउटपुट पथ होते हैं। काफी हद तक कम आकार (वीएनसीए क्रॉसिंग अंगों में से किसी की तुलना में) के कारण, एनसीए में स्व-प्रतिकृति मशीनें बहुत अधिक कॉम्पैक्ट हैं। उदाहरण के लिए, अब तक का सबसे छोटा प्रतिकृतिक, λG, में केवल 485 दैहिक कोशिकाएँ शामिल हैं।
vNCA में मेमोरी स्टोरेज
वीएनसीए में मेमोरी को स्टोर करना कई तरीकों से किया जा सकता है। इनमें से (इलेक्ट्रॉनिक विधि) ओटीएस कोशिकाओं का लूप बनाना है जिसके चारों ओर उत्तेजित नाड़ी घूम रही है। अब तक का सबसे आम तरीका (इलेक्ट्रो-मैकेनिकल विधि) गेट के रूप में कार्य करने के लिए सामान्य ट्रांसमिशन राज्य को बनाने और हटाने के लिए विशेष ट्रांसमिशन राज्य का उपयोग करना है। थोड़े से संशोधनों से ढेर सारे अलग-अलग गेट मिल सकते हैं, जिनमें कुंडी, पल्स डिवाइडर और वन-टाइम गेट शामिल हैं।
एनसीए में मेमोरी स्टोरेज
नोबिली के सेल्युलर ऑटोमेटन में यह कार्य भी सरल हो गया है। बिना आउटपुट वाली संगम कोशिका उत्तेजना की नाड़ी को तब तक 'रखती' रहती है जब तक कोई आउटपुट नहीं बन जाता। λ के आरेख मेंG ऊपर, उत्तेजित संगम कोशिका नारंगी रंग में प्रदर्शित होती है। यह इस स्थिति में तब तक रहेगा जब तक कि निकटवर्ती ओटीएस सेल नहीं बन जाता, जिस बिंदु पर सूचना अगले संगम सेल में प्रवाहित होगी।
संदर्भ
- Buckley, William R. (2008-01-01). "Signal crossing solutions in von Neumann self-replicating cellular automata". ResearchGate. Retrieved 2019-09-30.[better source needed]