हर्मिट ट्वीन: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Polynomial interpolation using derivative values}} संख्यात्मक विश्लेषण में, हर्माइट इंट...")
 
No edit summary
Line 2: Line 2:
[[संख्यात्मक विश्लेषण]] में, हर्माइट इंटरपोलेशन, जिसका नाम [[ चार्ल्स हर्मिट ]] के नाम पर रखा गया है, [[बहुपद]] इंटरपोलेशन की एक विधि है, जो [[लैग्रेंज इंटरपोलेशन]] को सामान्यीकृत करती है। लैग्रेंज इंटरपोलेशन से कम डिग्री वाले बहुपद की गणना करने की अनुमति देता है {{mvar|n}} जो समान मान लेता है {{mvar|n}} दिए गए फ़ंक्शन के रूप में दिए गए बिंदु। इसके बजाय, हर्माइट इंटरपोलेशन से कम डिग्री वाले बहुपद की गणना करता है {{mvar|mn}} ऐसा कि बहुपद और उसका {{math|''m'' − 1}} पहले डेरिवेटिव का मान समान होता है {{mvar|n}} किसी दिए गए फ़ंक्शन के रूप में दिए गए बिंदु और उसके {{math|''m'' − 1}} प्रथम व्युत्पन्न।
[[संख्यात्मक विश्लेषण]] में, हर्माइट इंटरपोलेशन, जिसका नाम [[ चार्ल्स हर्मिट ]] के नाम पर रखा गया है, [[बहुपद]] इंटरपोलेशन की एक विधि है, जो [[लैग्रेंज इंटरपोलेशन]] को सामान्यीकृत करती है। लैग्रेंज इंटरपोलेशन से कम डिग्री वाले बहुपद की गणना करने की अनुमति देता है {{mvar|n}} जो समान मान लेता है {{mvar|n}} दिए गए फ़ंक्शन के रूप में दिए गए बिंदु। इसके बजाय, हर्माइट इंटरपोलेशन से कम डिग्री वाले बहुपद की गणना करता है {{mvar|mn}} ऐसा कि बहुपद और उसका {{math|''m'' − 1}} पहले डेरिवेटिव का मान समान होता है {{mvar|n}} किसी दिए गए फ़ंक्शन के रूप में दिए गए बिंदु और उसके {{math|''m'' − 1}} प्रथम व्युत्पन्न।


हर्माइट की प्रक्षेप विधि न्यूटन बहुपद|न्यूटन की प्रक्षेप विधि से निकटता से संबंधित है, जिसमें दोनों विभाजित अंतरों की गणना से प्राप्त होते हैं। हालाँकि, हर्माइट इंटरपोलेटिंग बहुपद की गणना के लिए अन्य विधियाँ हैं। कोई व्यक्ति प्रक्षेप बहुपद के गुणांकों को [[अज्ञात (गणित)]] के रूप में लेकर रैखिक बीजगणित का उपयोग कर सकता है, और उन बाधाओं को रैखिक समीकरणों के रूप में लिख सकता है जिन्हें प्रक्षेप बहुपद को पूरा करना होगा। अन्य विधि के लिए देखें {{slink|Chinese remainder theorem|Hermite interpolation}}.
हर्माइट की प्रक्षेप विधि न्यूटन बहुपद|न्यूटन की प्रक्षेप विधि से निकटता से संबंधित है, जिसमें दोनों विभाजित अंतरों की गणना से प्राप्त होते हैं। हालाँकि, हर्माइट इंटरपोलेटिंग बहुपद की गणना के लिए अन्य विधियाँ हैं। कोई व्यक्ति प्रक्षेप बहुपद के गुणांकों को [[अज्ञात (गणित)]] के रूप में लेकर रैखिक बीजगणित का उपयोग कर सकता है, और उन बाधाओं को रैखिक समीकरणों के रूप में लिख सकता है जिन्हें प्रक्षेप बहुपद को पूरा करना होगा। अन्य विधि के लिए देखें .


==समस्या का विवरण==
==समस्या का विवरण==

Revision as of 16:53, 28 July 2023

संख्यात्मक विश्लेषण में, हर्माइट इंटरपोलेशन, जिसका नाम चार्ल्स हर्मिट के नाम पर रखा गया है, बहुपद इंटरपोलेशन की एक विधि है, जो लैग्रेंज इंटरपोलेशन को सामान्यीकृत करती है। लैग्रेंज इंटरपोलेशन से कम डिग्री वाले बहुपद की गणना करने की अनुमति देता है n जो समान मान लेता है n दिए गए फ़ंक्शन के रूप में दिए गए बिंदु। इसके बजाय, हर्माइट इंटरपोलेशन से कम डिग्री वाले बहुपद की गणना करता है mn ऐसा कि बहुपद और उसका m − 1 पहले डेरिवेटिव का मान समान होता है n किसी दिए गए फ़ंक्शन के रूप में दिए गए बिंदु और उसके m − 1 प्रथम व्युत्पन्न।

हर्माइट की प्रक्षेप विधि न्यूटन बहुपद|न्यूटन की प्रक्षेप विधि से निकटता से संबंधित है, जिसमें दोनों विभाजित अंतरों की गणना से प्राप्त होते हैं। हालाँकि, हर्माइट इंटरपोलेटिंग बहुपद की गणना के लिए अन्य विधियाँ हैं। कोई व्यक्ति प्रक्षेप बहुपद के गुणांकों को अज्ञात (गणित) के रूप में लेकर रैखिक बीजगणित का उपयोग कर सकता है, और उन बाधाओं को रैखिक समीकरणों के रूप में लिख सकता है जिन्हें प्रक्षेप बहुपद को पूरा करना होगा। अन्य विधि के लिए देखें .

समस्या का विवरण

हर्मिट इंटरपोलेशन में यथासंभव न्यूनतम डिग्री के बहुपद की गणना करना शामिल है जो किसी अज्ञात फ़ंक्शन से प्रेक्षित मान और उसके पहले के प्रेक्षित मान दोनों से मेल खाता है। m डेरिवेटिव. इस का मतलब है कि n(m + 1) मान

अवश्य जानना चाहिए. परिणामी बहुपद की घात इससे एक डिग्री कम है n(m + 1). (अधिक सामान्य मामले में, इसकी कोई आवश्यकता नहीं है m एक निश्चित मान होना; अर्थात्, कुछ बिंदुओं में दूसरों की तुलना में अधिक ज्ञात व्युत्पन्न हो सकते हैं। इस मामले में परिणामी बहुपद में डेटा बिंदुओं की संख्या से एक डिग्री कम होती है।)

आइए एक बहुपद पर विचार करें P(x) डिग्री से कम n(m + 1) अनिश्चित (परिवर्तनीय) गुणांक के साथ; अर्थात्, का गुणांक P(x) हैं n(m + 1) नए चर। फिर, उन अवरोधों को लिखने से जिन्हें प्रक्षेपित बहुपद को संतुष्ट करना होगा, किसी को रैखिक समीकरणों की एक प्रणाली मिलती है। n(m + 1) में रैखिक समीकरण n(m + 1) अज्ञात.

सामान्य तौर पर, ऐसी प्रणाली का बिल्कुल एक ही समाधान होता है। चार्ल्स हरमाइट ने जैसे ही साबित कर दिया कि यहाँ प्रभावी रूप से यही मामला है xi जोड़ीवार भिन्न हैं,[citation needed] और इसकी गणना के लिए एक विधि प्रदान की, जिसका वर्णन नीचे किया गया है।

विधि

साधारण मामला

किसी फ़ंक्शन f के हर्मिट बहुपद की गणना करने के लिए विभाजित अंतरों का उपयोग करते समय, पहला कदम प्रत्येक बिंदु को m बार कॉपी करना है। (यहां हम सबसे सरल मामले पर विचार करेंगे सभी बिंदुओं के लिए।) इसलिए, दिया गया डेटा अंक , और मूल्य और एक समारोह के लिए जिसे हम प्रक्षेपित करना चाहते हैं, हम एक नया डेटासेट बनाते हैं

ऐसा है कि

अब, हम अंकों के लिए एक विभाजित अंतर बनाते हैं . हालाँकि, कुछ विभाजित मतभेदों के लिए,

जो अपरिभाषित है. इस मामले में, विभाजित अंतर को प्रतिस्थापित कर दिया जाता है . अन्य सभी की गणना सामान्य रूप से की जाती है।

सामान्य मामला

सामान्य स्थिति में, मान लीजिए कि कोई बिंदु दिया गया है के डेरिवेटिव हैं। फिर डेटासेट की समरूप प्रतियाँ सम्मिलित हैं . तालिका बनाते समय, मतभेदों को विभाजित करें समान मानों की गणना इस प्रकार की जाएगी

उदाहरण के लिए,

वगैरह।

उदाहरण

फ़ंक्शन पर विचार करें . फ़ंक्शन और उसके पहले दो डेरिवेटिव का मूल्यांकन करना , हमें निम्नलिखित डेटा प्राप्त होता है:

x ƒ(x) ƒ'(x) ƒ''(x)
−1 2 −8 56
0 1 0 0
1 2 8 56

चूँकि हमारे पास काम करने के लिए दो डेरिवेटिव हैं, इसलिए हम सेट का निर्माण करते हैं . हमारी विभाजित अंतर तालिका इस प्रकार है:

और उत्पन्न बहुपद है