सरल एल्गोरिदम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
कम्प्यूटेशनल तरल गतिकी (सीएफडी) में, नेवियर-स्टोक्स समीकरणों को हल करने के लिए '''SIMPLE एल्गोरिथ्म''' एक व्यापक रूप से उपयोग की जाने वाली संख्यात्मक प्रक्रिया है। इस प्रकार SIMPLE दबाव से जुड़े समीकरणों के लिए अर्ध-अंतर्निहित विधि का संक्षिप्त रूप है।
कम्प्यूटेशनल तरल गतिकी (सीएफडी) में, नेवियर-स्टोक्स समीकरणों को हल करने के लिए '''SIMPLE एल्गोरिथ्म''' एक व्यापक रूप से उपयोग की जाने वाली संख्यात्मक प्रक्रिया है। इस प्रकार SIMPLE दबाव से जुड़े समीकरणों के लिए अर्ध-अंतर्निहित विधि का संक्षिप्त रूप है।


SIMPLE एल्गोरिथ्म को सत्र 1970 के दशक की शुरुआत में [[इंपीरियल कॉलेज लंदन|इंपीरियल कॉलेज]], लंदन में प्रोफेसर [[ब्रायन स्पाल्डिंग]] और उनके छात्र [[सुहास पाटणकर]] द्वारा विकसित किया गया था। इस प्रकार तब से विभिन्न प्रकार के द्रव प्रवाह और गर्मी हस्तांतरण समस्याओं को हल करने के लिए अनेक शोधकर्ताओं द्वारा इसका बड़े पैमाने पर उपयोग किया गया है।<ref>{{cite conference |last1=Mangani |first1=L. |last2=Bianchini |first2=C. |conference=[[Proceedings of the OpenFOAM International Conference 2007]] |year=2007 |url=https://flore.unifi.it/retrieve/handle/2158/418277/15222/OFIC-07.pdf |title=टर्बोमशीनरी में हीट ट्रांसफर अनुप्रयोग|access-date=2016-03-16}}</ref>
SIMPLE एल्गोरिथ्म को सत्र 1970 के दशक के प्रारम्भ में [[इंपीरियल कॉलेज लंदन|इंपीरियल कॉलेज]], लंदन में प्रोफेसर [[ब्रायन स्पाल्डिंग]] और उनके छात्र [[सुहास पाटणकर]] द्वारा विकसित किया गया था। इस प्रकार तब से विभिन्न प्रकार के द्रव प्रवाह और गर्मी हस्तांतरण समस्याओं को हल करने के लिए अनेक शोधकर्ताओं द्वारा इसका बड़े पैमाने पर उपयोग किया गया है।<ref>{{cite conference |last1=Mangani |first1=L. |last2=Bianchini |first2=C. |conference=[[Proceedings of the OpenFOAM International Conference 2007]] |year=2007 |url=https://flore.unifi.it/retrieve/handle/2158/418277/15222/OFIC-07.pdf |title=टर्बोमशीनरी में हीट ट्रांसफर अनुप्रयोग|access-date=2016-03-16}}</ref>


कम्प्यूटेशनल तरल गतिकी पर अनेक लोकप्रिय पुस्तकें SIMPLE एल्गोरिथ्म पर विस्तार से चर्चा करती हैं।<ref>{{cite book |last=Patankar |first=S. V. | author-link = Suhas Patankar |title=संख्यात्मक ताप स्थानांतरण और द्रव प्रवाह|publisher=[[Taylor & Francis]] |year=1980 |isbn=978-0-89116-522-4}}</ref><ref>{{cite book |last=Ferziger |first=J. H. | author-link = J. H. Ferziger |author2=Peric, M.  |title=द्रव गतिशीलता के लिए कम्प्यूटेशनल तरीके|publisher=[[Springer-Verlag]] |year=2001 |isbn= 978-3-540-42074-3}}</ref> इस प्रकार संशोधित संस्करण SIMPLER एल्गोरिथ्म (सरल संशोधित) है, जिसे सत्र 1979 में पाटनकर द्वारा प्रस्तुत किया गया था।<ref>{{cite book |last=Tannehill|first=J. C.|author2 = Anderson, D. A. |author2-link = Dale A. Anderson |author3=Pletcher, R. H. |title=कम्प्यूटेशनल द्रव यांत्रिकी और ताप स्थानांतरण|url=https://archive.org/details/computationalflu0000tann|url-access=registration|publisher=[[Taylor & Francis]] |year=1997 |isbn=9781560320463 }}</ref>
कम्प्यूटेशनल तरल गतिकी पर अनेक लोकप्रिय पुस्तकें SIMPLE एल्गोरिथ्म पर विस्तार से विचार-विमर्श करती हैं।<ref>{{cite book |last=Patankar |first=S. V. | author-link = Suhas Patankar |title=संख्यात्मक ताप स्थानांतरण और द्रव प्रवाह|publisher=[[Taylor & Francis]] |year=1980 |isbn=978-0-89116-522-4}}</ref><ref>{{cite book |last=Ferziger |first=J. H. | author-link = J. H. Ferziger |author2=Peric, M.  |title=द्रव गतिशीलता के लिए कम्प्यूटेशनल तरीके|publisher=[[Springer-Verlag]] |year=2001 |isbn= 978-3-540-42074-3}}</ref> इस प्रकार संशोधित संस्करण SIMPLER एल्गोरिथ्म (सरल संशोधित) है, जिसे सत्र 1979 में पाटनकर द्वारा प्रस्तुत किया गया था।<ref>{{cite book |last=Tannehill|first=J. C.|author2 = Anderson, D. A. |author2-link = Dale A. Anderson |author3=Pletcher, R. H. |title=कम्प्यूटेशनल द्रव यांत्रिकी और ताप स्थानांतरण|url=https://archive.org/details/computationalflu0000tann|url-access=registration|publisher=[[Taylor & Francis]] |year=1997 |isbn=9781560320463 }}</ref>
== '''एल्गोरिथम''' ==
== '''एल्गोरिथम''' ==
'''एल्गोरिथम''' पुनरावृत्तीय है‚ समाधान अद्यतन के मूल चरण इस प्रकार हैं:
'''एल्गोरिथम''' पुनरावृत्तीय है‚ समाधान अद्यतन के मूल चरण इस प्रकार हैं:
Line 10: Line 10:
# वेग और दबाव के ग्रेडिएंट की गणना करें।
# वेग और दबाव के ग्रेडिएंट की गणना करें।
# मध्यवर्ती वेग क्षेत्र की गणना करने के लिए विच्छेदित संवेग समीकरण को हल करें।
# मध्यवर्ती वेग क्षेत्र की गणना करने के लिए विच्छेदित संवेग समीकरण को हल करें।
# चेहरों पर असंशोधित द्रव्यमान प्रवाह की गणना करें।
# फेसेस पर असंशोधित द्रव्यमान प्रवाह की गणना करें।
# दबाव सुधार के सेल मान उत्पन्न करने के लिए दबाव सुधार समीकरण को हल करें।
# दबाव सुधार के सेल मान उत्पन्न करने के लिए दबाव सुधार समीकरण को हल करें।
# दबाव क्षेत्र को अद्यतन करें: <math> p^{k + 1}  = p^k  + \text{urf} \cdot p^{'} </math> जहां यूआरएफ दबाव के लिए कम-विश्राम कारक है।
# दबाव क्षेत्र को अद्यतन करें: <math> p^{k + 1}  = p^k  + \text{urf} \cdot p^{'} </math> जहां यूआरएफ दबाव के लिए कम-विश्राम कारक है।
Line 21: Line 21:


* [[पीआईएसओ एल्गोरिथ्म]]
* [[पीआईएसओ एल्गोरिथ्म]]
* [[SIMPLEC एल्गोरिथ्म|सरल C एल्गोरिथ्म]]
* [[SIMPLEC एल्गोरिथ्म]]


=='''संदर्भ'''==
=='''संदर्भ'''==

Revision as of 13:31, 14 August 2023

कम्प्यूटेशनल तरल गतिकी (सीएफडी) में, नेवियर-स्टोक्स समीकरणों को हल करने के लिए SIMPLE एल्गोरिथ्म एक व्यापक रूप से उपयोग की जाने वाली संख्यात्मक प्रक्रिया है। इस प्रकार SIMPLE दबाव से जुड़े समीकरणों के लिए अर्ध-अंतर्निहित विधि का संक्षिप्त रूप है।

SIMPLE एल्गोरिथ्म को सत्र 1970 के दशक के प्रारम्भ में इंपीरियल कॉलेज, लंदन में प्रोफेसर ब्रायन स्पाल्डिंग और उनके छात्र सुहास पाटणकर द्वारा विकसित किया गया था। इस प्रकार तब से विभिन्न प्रकार के द्रव प्रवाह और गर्मी हस्तांतरण समस्याओं को हल करने के लिए अनेक शोधकर्ताओं द्वारा इसका बड़े पैमाने पर उपयोग किया गया है।[1]

कम्प्यूटेशनल तरल गतिकी पर अनेक लोकप्रिय पुस्तकें SIMPLE एल्गोरिथ्म पर विस्तार से विचार-विमर्श करती हैं।[2][3] इस प्रकार संशोधित संस्करण SIMPLER एल्गोरिथ्म (सरल संशोधित) है, जिसे सत्र 1979 में पाटनकर द्वारा प्रस्तुत किया गया था।[4]

एल्गोरिथम

एल्गोरिथम पुनरावृत्तीय है‚ समाधान अद्यतन के मूल चरण इस प्रकार हैं:

  1. सीमा की शर्तें निर्धारित करें.
  2. वेग और दबाव के ग्रेडिएंट की गणना करें।
  3. मध्यवर्ती वेग क्षेत्र की गणना करने के लिए विच्छेदित संवेग समीकरण को हल करें।
  4. फेसेस पर असंशोधित द्रव्यमान प्रवाह की गणना करें।
  5. दबाव सुधार के सेल मान उत्पन्न करने के लिए दबाव सुधार समीकरण को हल करें।
  6. दबाव क्षेत्र को अद्यतन करें: जहां यूआरएफ दबाव के लिए कम-विश्राम कारक है।
  7. सीमा दबाव सुधारों को अद्यतन करें .
  8. फेस के मास फ्लक्स को ठीक करें:
  9. सेल वेग को ठीक करें:  ; कहाँ दबाव सुधार की प्रवणता है, वेग समीकरण का प्रतिनिधित्व करने वाले विवेकाधीन रैखिक प्रणाली के लिए केंद्रीय गुणांक का सदिश है और वॉल्यूम सेल वॉल्यूम है।
  10. दबाव परिवर्तन के कारण घनत्व अद्यतन करें।

यह भी देखें

संदर्भ

  1. Mangani, L.; Bianchini, C. (2007). टर्बोमशीनरी में हीट ट्रांसफर अनुप्रयोग (PDF). Proceedings of the OpenFOAM International Conference 2007. Retrieved 2016-03-16.
  2. Patankar, S. V. (1980). संख्यात्मक ताप स्थानांतरण और द्रव प्रवाह. Taylor & Francis. ISBN 978-0-89116-522-4.
  3. Ferziger, J. H.; Peric, M. (2001). द्रव गतिशीलता के लिए कम्प्यूटेशनल तरीके. Springer-Verlag. ISBN 978-3-540-42074-3.
  4. Tannehill, J. C.; Anderson, D. A.; Pletcher, R. H. (1997). कम्प्यूटेशनल द्रव यांत्रिकी और ताप स्थानांतरण. Taylor & Francis. ISBN 9781560320463.