जीन रिडंडेंसी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:


== निरर्थक जीन की उत्पत्ति और विकास                    ==
== निरर्थक जीन की उत्पत्ति और विकास                    ==
जीन अतिरेक अधिकांशतः जीन दोहराव के परिणामस्वरूप होता है।<ref>{{Cite journal|last=Wagner|first=Andreas|date=1996-06-01|title=जीन दोहराव और ट्रांसक्रिप्शनल नियामकों के नेटवर्क में इसके विकास के कारण आनुवंशिक अतिरेक|url=https://doi.org/10.1007/BF00209427|journal=Biological Cybernetics|language=en|volume=74|issue=6|pages=557–567|doi=10.1007/BF00209427|pmid=8672563|s2cid=8616418|issn=1432-0770}}</ref> जीन दोहराव के तीन अधिक सामान्य तंत्र [[रेट्रोपोसॉन]], असमान [[क्रोमोसोमल क्रॉसओवर]] और गैर-होमोलॉगस खंडीय दोहराव हैं। रिट्रोपोजिशन तब होता है जब किसी जीन के एमआरएनए प्रतिलेख को डीएनए में रिवर्स ट्रांसक्रिप्ट किया जाता है और अलग स्थान पर जीनोम में डाला जाता है। असमान क्रॉसिंग ओवर के समय, होमोलॉजी (जीवविज्ञान) गुणसूत्र अपने डीएनए के असमान हिस्सों का आदान-प्रदान करते हैं। इससे गुणसूत्र के जीन को दूसरे गुणसूत्र में स्थानांतरित किया जा सकता है, जिससे गुणसूत्र पर दो समान जीन रह जाते हैं और दूसरे गुणसूत्र पर जीन की कोई प्रति नहीं रह जाती है। गैर-समरूप दोहराव, प्रतिकृति त्रुटियों के परिणामस्वरूप होता है जो रुचि के जीन को नई स्थिति में स्थानांतरित कर देता है। फिर अग्रानुक्रम दोहराव होता है, जिससे ही जीन की दो प्रतियों के साथ गुणसूत्र बनता है। चित्र 1 इन तीन तंत्रों का दृश्य प्रदान करता है।<ref>{{Cite journal|last=Hurles|first=Matthew|date=2004-07-13|title=Gene Duplication: The Genomic Trade in Spare Parts|journal=PLOS Biology|language=en|volume=2|issue=7|pages=e206|doi=10.1371/journal.pbio.0020206|issn=1545-7885|pmc=449868|pmid=15252449}}</ref> जब जीन को जीनोम के अंदर दोहराया जाता है, तो दो प्रतियां प्रारंभ में कार्यात्मक रूप से अनावश्यक होती हैं। इन निरर्थक जीनों को परलोक माना जाता है क्योंकि वे समय के साथ परिवर्तन जमा करते हैं, जब तक कि वे कार्यात्मक रूप से भिन्न नहीं हो जाते।<ref name=":04">{{Cite journal|last1=Conrad|first1=Bernard|last2=Antonarakis|first2=Stylianos E.|date=September 2007|title=Gene Duplication: A Drive for Phenotypic Diversity and Cause of Human Disease|url=http://www.annualreviews.org/doi/10.1146/annurev.genom.8.021307.110233|journal=Annual Review of Genomics and Human Genetics|language=en|volume=8|issue=1|pages=17–35|doi=10.1146/annurev.genom.8.021307.110233|pmid=17386002|issn=1527-8204}}</ref>
जीन अतिरेक अधिकांशतः जीन दोहराव के परिणामस्वरूप होता है।<ref>{{Cite journal|last=Wagner|first=Andreas|date=1996-06-01|title=जीन दोहराव और ट्रांसक्रिप्शनल नियामकों के नेटवर्क में इसके विकास के कारण आनुवंशिक अतिरेक|url=https://doi.org/10.1007/BF00209427|journal=Biological Cybernetics|language=en|volume=74|issue=6|pages=557–567|doi=10.1007/BF00209427|pmid=8672563|s2cid=8616418|issn=1432-0770}}</ref> जीन दोहराव के तीन अधिक सामान्य तंत्र [[रेट्रोपोसॉन]], असमान [[क्रोमोसोमल क्रॉसओवर]] और गैर-होमोलॉगस खंडीय दोहराव हैं। रिट्रोपोजिशन तब होता है जब किसी जीन के एमआरएनए प्रतिलेख को डीएनए में रिवर्स ट्रांसक्रिप्ट किया जाता है और भिन्न स्थान पर जीनोम में डाला जाता है। असमान क्रॉसिंग ओवर के समय, होमोलॉजी (जीवविज्ञान) गुणसूत्र अपने डीएनए के असमान हिस्सों का आदान-प्रदान करते हैं। इससे गुणसूत्र के जीन को दूसरे गुणसूत्र में स्थानांतरित किया जा सकता है, जिससे गुणसूत्र पर दो समान जीन रह जाते हैं और दूसरे गुणसूत्र पर जीन की कोई प्रति नहीं रह जाती है। गैर-समरूप दोहराव, प्रतिकृति त्रुटियों के परिणामस्वरूप होता है जो रुचि के जीन को नई स्थिति में स्थानांतरित कर देता है। फिर अग्रानुक्रम दोहराव होता है, जिससे ही जीन की दो प्रतियों के साथ गुणसूत्र बनता है। चित्र 1 इन तीन तंत्रों का दृश्य प्रदान करता है।<ref>{{Cite journal|last=Hurles|first=Matthew|date=2004-07-13|title=Gene Duplication: The Genomic Trade in Spare Parts|journal=PLOS Biology|language=en|volume=2|issue=7|pages=e206|doi=10.1371/journal.pbio.0020206|issn=1545-7885|pmc=449868|pmid=15252449}}</ref> जब जीन को जीनोम के अंदर दोहराया जाता है, तो दो प्रतियां प्रारंभ में कार्यात्मक रूप से अनावश्यक होती हैं। इन निरर्थक जीनों को परलोक माना जाता है क्योंकि वे समय के साथ परिवर्तन संग्रहित करते हैं, जब तक कि वे कार्यात्मक रूप से भिन्न नहीं हो जाते।<ref name=":04">{{Cite journal|last1=Conrad|first1=Bernard|last2=Antonarakis|first2=Stylianos E.|date=September 2007|title=Gene Duplication: A Drive for Phenotypic Diversity and Cause of Human Disease|url=http://www.annualreviews.org/doi/10.1146/annurev.genom.8.021307.110233|journal=Annual Review of Genomics and Human Genetics|language=en|volume=8|issue=1|pages=17–35|doi=10.1146/annurev.genom.8.021307.110233|pmid=17386002|issn=1527-8204}}</ref>


अधिकांश शोध इस प्रश्न पर केंद्रित है कि अनावश्यक जीन कैसे बने रहते हैं।<ref name=":32">Long M, Vankuren NW, Chen S, Vibranovski MD. 2013. New gene evolution: Little did we know. Annu. Rev. Genet. 47:307–333. {{doi|10.1146/annurev-genet-111212-133301.}}</ref> निरर्थक जीनों के संरक्षण को समझाने का प्रयास करने के लिए तीन मॉडल सामने आए हैं: जो कि कुछ इस प्रकार है अनुकूली विकिरण, विचलन, और अनुकूली संघर्ष से बचना आदि। विशेष रूप से, दोहराव की घटना के पश्चात प्रतिधारण दोहराव की घटना के प्रकार और जीन वर्ग के प्रकार से प्रभावित होता है। अर्थात्, कुछ जीन वर्ग छोटे मापदंड पर दोहराव या संपूर्ण जीनोम दोहराव घटना के पश्चात अतिरेक के लिए उत्तम तथा अनुकूल हैं।<ref name=":4">{{Cite journal|year=2008|language=en|doi=10.1038/nrg2482|pmid=19015656|last1=Conant|first1=G. C.|last2=Wolfe|first2=K. H.|title=Turning a hobby into a job: How duplicated genes find new functions |journal=Nature Reviews Genetics |volume=9|issue=12|pages=938–950|s2cid=1240225}}</ref> निरर्थक जीनों के जीवित रहने की अधिक संभावना होती है जब वह सम्मिश्र मार्गों में सम्मिलित होते हैं और संपूर्ण जीनोम दोहराव या बहुवर्ग दोहराव के उत्पाद होते हैं।<ref name=":4" />
अधिकांश शोध इस प्रश्न पर केंद्रित है कि अनावश्यक जीन कैसे बने रहते हैं।<ref name=":32">Long M, Vankuren NW, Chen S, Vibranovski MD. 2013. New gene evolution: Little did we know. Annu. Rev. Genet. 47:307–333. {{doi|10.1146/annurev-genet-111212-133301.}}</ref> निरर्थक जीनों के संरक्षण को समझाने का प्रयास करने के लिए तीन मॉडल सामने आए हैं: जो कि कुछ इस प्रकार है अनुकूली विकिरण, विचलन, और अनुकूली संघर्ष से बचना आदि। विशेष रूप से, दोहराव की घटना के पश्चात प्रतिधारण दोहराव की घटना के प्रकार और जीन वर्ग के प्रकार से प्रभावित होता है। अर्थात्, कुछ जीन वर्ग छोटे मापदंड पर दोहराव या संपूर्ण जीनोम दोहराव घटना के पश्चात अतिरेक के लिए उत्तम तथा अनुकूल हैं।<ref name=":4">{{Cite journal|year=2008|language=en|doi=10.1038/nrg2482|pmid=19015656|last1=Conant|first1=G. C.|last2=Wolfe|first2=K. H.|title=Turning a hobby into a job: How duplicated genes find new functions |journal=Nature Reviews Genetics |volume=9|issue=12|pages=938–950|s2cid=1240225}}</ref> निरर्थक जीनों के जीवित रहने की अधिक संभावना होती है जब वह सम्मिश्र मार्गों में सम्मिलित होते हैं और संपूर्ण जीनोम दोहराव या बहुवर्ग दोहराव के उत्पाद होते हैं।<ref name=":4" />
Line 15: Line 15:


=== कार्यात्मक विचलन                        ===
=== कार्यात्मक विचलन                        ===
चूंकि जीनोम अनेक पीढ़ियों तक प्रतिकृति बनाता है, अनावश्यक जीन का कार्य [[आनुवंशिक बहाव]] के कारण विकसित होने की सबसे अधिक संभावना है। आनुवंशिक बहाव या तो विविधताओं को समाप्त करके या जनसंख्या में भिन्नताओं को ठीक करके आनुवंशिक अतिरेक को प्रभावित करता है।<ref name=":32" />इस घटना में कि आनुवंशिक बहाव वेरिएंट को बनाए रखता है, जीन उत्परिवर्तन जमा कर सकता है जो समग्र कार्य को बदल देता है।<ref name=":22">Force A et al. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 151:1531–1545.</ref> हालाँकि, अनेक अनावश्यक जीन अलग-अलग हो सकते हैं लेकिन सबफ़ंक्शनलाइज़ेशन जैसे तंत्र द्वारा मूल कार्य को बनाए रखते हैं, जो डुप्लिकेट की पूरक कार्रवाई के बावजूद मूल जीन फ़ंक्शन को संरक्षित करता है।<ref name=":4" /><ref name=":32" /> जीन में कार्यात्मक विचलन के तीन तंत्र हैं नॉनफंक्शनलाइजेशन (या जीन हानि), नियोफंक्शनलाइजेशन और सबफंक्शनलाइजेशन।<ref name=":04" />
चूंकि जीनोम अनेक पीढ़ियों तक प्रतिकृति बनाता है, जहाँ अनावश्यक जीन का कार्य [[आनुवंशिक बहाव|आनुवंशिक प्रवाह]] के कारण विकसित होने की सबसे अधिक संभावना है। आनुवंशिक प्रवाह या तो विविधताओं को समाप्त करके या जनसंख्या में भिन्नताओं को ठीक करके आनुवंशिक अतिरेक को प्रभावित करता है।<ref name=":32" /> इस घटना में कि आनुवंशिक प्रवाह वेरिएंट को बनाए रखता है, जीन उत्परिवर्तन संग्रहित कर सकता है जो कि समग्र कार्य को परिवर्तित कर देता है।<ref name=":22">Force A et al. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 151:1531–1545.</ref> चूँकि, अनेक अनावश्यक जीन भिन्न-भिन्न हो सकते हैं किन्तु सबफ़ंक्शनलाइज़ेशन जैसे तंत्र द्वारा मूल कार्य को बनाए रखते हैं, जो डुप्लिकेट की पूरक '''कार्रवाई''' के अतिरिक्त मूल जीन फ़ंक्शन को संरक्षित करता है।<ref name=":4" /><ref name=":32" /> जीन में कार्यात्मक विचलन के तीन तंत्र हैं जैसे नॉनफंक्शनलाइजेशन (या जीन हानि), नियोफंक्शनलाइजेशन और सबफंक्शनलाइजेशन आदि ।<ref name=":04" />


अक्रियाशीलता, या अध:पतन/जीन हानि के समय, डुप्लिकेट जीन की प्रति उत्परिवर्तन प्राप्त करती है जो इसे निष्क्रिय कर देती है या जीन को शांत कर देती है। गैर-कार्यात्मकता अधिकांशतः एकल जीन दोहराव का परिणाम होती है।<ref name=":04" />इस समय, जीन का कोई कार्य नहीं होता है और इसे [[स्यूडोजीन]] कहा जाता है। आनुवंशिक उत्परिवर्तन के कारण स्यूडोजेन समय के साथ नष्ट हो सकते हैं। नियोफ़ंक्शनलाइज़ेशन तब होता है जब जीन की प्रति उत्परिवर्तन जमा करती है जो जीन को नया, लाभकारी कार्य देती है जो मूल कार्य से भिन्न होती है। सबफ़ंक्शनलाइज़ेशन तब होता है जब निरर्थक जीन की दोनों प्रतियां उत्परिवर्तन प्राप्त कर लेती हैं। प्रत्येक प्रतिलिपि केवल आंशिक रूप से सक्रिय होती है; इनमें से दो आंशिक प्रतियाँ मूल जीन की सामान्य प्रति के रूप में कार्य करती हैं। दाईं ओर चित्र 2 इस अवधारणा का दृश्य प्रदान करता है।
इस प्रकार की अक्रियाशीलता, या अध:पतन/जीन हानि के समय, डुप्लिकेट जीन की प्रति उत्परिवर्तन प्राप्त करती है जो इसे निष्क्रिय कर देती है या जीन को शांत कर देती है। गैर-कार्यात्मकता अधिकांशतः एकल जीन दोहराव का परिणाम होती है।<ref name=":04" /> इस समय, जीन का कोई कार्य नहीं होता है और इसे [[स्यूडोजीन]] कहा जाता है। आनुवंशिक उत्परिवर्तन के कारण स्यूडोजेन समय के साथ नष्ट हो सकते हैं। नियोफ़ंक्शनलाइज़ेशन तब होता है जब जीन की प्रति उत्परिवर्तन संग्रहित करती है जो जीन को नया, लाभकारी कार्य देती है जो मूल कार्य से भिन्न होती है। सबफ़ंक्शनलाइज़ेशन तब होता है जब निरर्थक जीन की दोनों प्रतियां उत्परिवर्तन प्राप्त कर लेती हैं। प्रत्येक प्रतिलिपि केवल आंशिक रूप से सक्रिय होती है; इनमें से दो आंशिक प्रतियाँ मूल जीन की सामान्य प्रति के रूप में कार्य करती हैं। दाईं ओर चित्र 2 इस अवधारणा का दृश्य प्रदान करता है।


==== ट्रांसपोज़ेबल तत्व ====
==== ट्रांसपोज़ेबल अवयव                                                    ====
ट्रांसपोज़ेबल तत्व कार्यात्मक विभेदन में विभिन्न भूमिकाएँ निभाते हैं। पुनर्संयोजन क्रियान्वित करके, ट्रांसपोज़ेबल तत्व जीनोम में अनावश्यक अनुक्रमों को स्थानांतरित कर सकते हैं।<ref name=":5">{{Cite journal|last1=Platt|first1=Roy N.|last2=Vandewege|first2=Michael W.|last3=Ray|first3=David A.|date=March 2018|title=स्तनधारी ट्रांसपोज़ेबल तत्व और जीनोम विकास पर उनके प्रभाव|journal=Chromosome Research|language=en|volume=26|issue=1–2|pages=25–43|doi=10.1007/s10577-017-9570-z|pmid=29392473|pmc=5857283|issn=0967-3849|doi-access=free}}</ref> अनुक्रम संरचना और स्थान में यह परिवर्तन कार्यात्मक विचलन का स्रोत है।<ref name=":5" />ट्रांसपोज़ेबल तत्व संभावित रूप से जीन अभिव्यक्ति को प्रभावित करते हैं, यह देखते हुए कि उनमें बड़ी मात्रा में माइक्रो-आरएनए होते हैं।<ref name=":5" />
ट्रांसपोज़ेबल अवयव कार्यात्मक विभेदन में विभिन्न भूमिकाएँ निभाते हैं। पुनर्संयोजन क्रियान्वित करके, ट्रांसपोज़ेबल अवयव जीनोम में अनावश्यक अनुक्रमों को स्थानांतरित कर सकते हैं।<ref name=":5">{{Cite journal|last1=Platt|first1=Roy N.|last2=Vandewege|first2=Michael W.|last3=Ray|first3=David A.|date=March 2018|title=स्तनधारी ट्रांसपोज़ेबल तत्व और जीनोम विकास पर उनके प्रभाव|journal=Chromosome Research|language=en|volume=26|issue=1–2|pages=25–43|doi=10.1007/s10577-017-9570-z|pmid=29392473|pmc=5857283|issn=0967-3849|doi-access=free}}</ref> इस प्रकार के अनुक्रम संरचना और स्थान में यह परिवर्तन कार्यात्मक विचलन का स्रोत है।<ref name=":5" /> जहाँ ट्रांसपोज़ेबल अवयव संभावित रूप से जीन अभिव्यक्ति को प्रभावित करते हैं, यह देखते हुए कि उनमें बड़ी मात्रा में माइक्रो-आरएनए होते हैं।<ref name=":5" />




== जीन रखरखाव परिकल्पना ==
== जीन रखरखाव परिकल्पना         ==
निरर्थक जीनों का विकास और उत्पत्ति अज्ञात रहती है, मुख्यतः क्योंकि विकास इतनी लंबी अवधि में होता है। सैद्धांतिक रूप से, जीन को उत्परिवर्तन के बिना तब तक बनाए नहीं रखा जा सकता जब तक कि उस पर चयनात्मक दबाव न हो। इसलिए, जीन अतिरेक, जीन की दोनों प्रतियों को उत्परिवर्तन जमा करने की अनुमति देगा, जब तक कि दूसरा अभी भी अपना कार्य करने में सक्षम है। इसका मतलब यह है कि सभी अनावश्यक जीन सैद्धांतिक रूप से छद्म जीन बन जाएंगे और अंततः नष्ट हो जाएंगे। वैज्ञानिकों ने दो परिकल्पनाएँ तैयार की हैं कि क्यों अनावश्यक जीन जीनोम में रह सकते हैं: बैकअप परिकल्पना और पिग्गीबैक परिकल्पना।<ref>{{Cite journal|title = आनुवंशिक अतिरेक और उनका विकासवादी रखरखाव|last = Zhang|first = Jianzhi|date = 2012|journal = Evolutionary Systems Biology Advances in Experimental Medicine and Biology|volume = 751|pages = 279–300|doi = 10.1007/978-1-4614-3567-9_13|pmid = 22821463|isbn = 978-1-4614-3566-2|series = Advances in Experimental Medicine and Biology}}</ref>
निरर्थक जीनों का विकास और उत्पत्ति मुख्यतः अज्ञात रहती है, क्योंकि विकास इतनी लंबी अवधि में होता है। सैद्धांतिक रूप से, जीन को उत्परिवर्तन के बिना तब तक बनाए नहीं रखा जा सकता जब तक कि उस पर चयनात्मक दबाव न हो। इसलिए, जीन अतिरेक, जीन की दोनों प्रतियों को उत्परिवर्तन संग्रहित करने की अनुमति देगा, जब तक कि दूसरा अभी भी अपना कार्य करने में सक्षम है। इसका मतलब यह है कि सभी अनावश्यक जीन सैद्धांतिक रूप से छद्म जीन बन जाएंगे और अंततः नष्ट हो जाएंगे। वैज्ञानिकों ने दो परिकल्पनाएँ तैयार की हैं कि क्यों अनावश्यक जीन जीनोम में रह सकते हैं: बैकअप परिकल्पना और पिग्गीबैक परिकल्पना।<ref>{{Cite journal|title = आनुवंशिक अतिरेक और उनका विकासवादी रखरखाव|last = Zhang|first = Jianzhi|date = 2012|journal = Evolutionary Systems Biology Advances in Experimental Medicine and Biology|volume = 751|pages = 279–300|doi = 10.1007/978-1-4614-3567-9_13|pmid = 22821463|isbn = 978-1-4614-3566-2|series = Advances in Experimental Medicine and Biology}}</ref>
बैकअप परिकल्पना का प्रस्ताव है कि अनावश्यक जीन प्रकार की बैक-अप योजना के रूप में जीनोम में रहते हैं। यदि मूल जीन अपना कार्य खो देता है, तो अनावश्यक जीन कोशिका पर कब्ज़ा कर लेता है और उसे जीवित रखता है। पिग्गीबैक परिकल्पना में कहा गया है कि जीनोम में दो [http://homepage.usask.ca/~ctl271/857/def_homolog.shtml परलॉग] में कुछ प्रकार के गैर-अतिव्यापी फ़ंक्शन के साथ-साथ अनावश्यक फ़ंक्शन भी होते हैं। इस मामले में, जीन का अनावश्यक हिस्सा उस क्षेत्र की निकटता के कारण जीनोम में रहता है जो अद्वितीय कार्य के लिए कोड करता है।<ref>{{Cite journal|last1 = Qian|first1 = Wenfeng|last2 = Liao|first2 = Ben-Yang|last3 = Chang|first3 = Andrew Y.-F.|last4 = Zhang|first4 = Jianzhi|date = 2010-10-01|title = डुप्लिकेट जीन का रखरखाव और कम अभिव्यक्ति द्वारा उनकी कार्यात्मक अतिरेक|journal = Trends in Genetics|volume = 26|issue = 10|pages = 425–430|doi = 10.1016/j.tig.2010.07.002|issn = 0168-9525|pmc = 2942974|pmid = 20708291}}</ref> जीनोम में अनावश्यक जीन के बने रहने का कारण सतत प्रश्न है और हर जगह शोधकर्ताओं द्वारा जीन अतिरेक का अध्ययन किया जा रहा है। बैकअप और पिग्गीबैक मॉडल के अलावा अनेक परिकल्पनाएँ हैं। उदाहरण के लिए, मिशिगन विश्वविद्यालय में, अध्ययन यह सिद्धांत प्रदान करता है कि अनावश्यक जीन को कम अभिव्यक्ति द्वारा जीनोम में बनाए रखा जाता है।
बैकअप परिकल्पना का प्रस्ताव है कि अनावश्यक जीन प्रकार की बैक-अप योजना के रूप में जीनोम में रहते हैं। यदि मूल जीन अपना कार्य खो देता है, तो अनावश्यक जीन कोशिका पर कब्ज़ा कर लेता है और उसे जीवित रखता है। पिग्गीबैक परिकल्पना में कहा गया है कि जीनोम में दो [http://homepage.usask.ca/~ctl271/857/def_homolog.shtml परलॉग] में कुछ प्रकार के गैर-अतिव्यापी फ़ंक्शन के साथ-साथ अनावश्यक फ़ंक्शन भी होते हैं। इस मामले में, जीन का अनावश्यक हिस्सा उस क्षेत्र की निकटता के कारण जीनोम में रहता है जो अद्वितीय कार्य के लिए कोड करता है।<ref>{{Cite journal|last1 = Qian|first1 = Wenfeng|last2 = Liao|first2 = Ben-Yang|last3 = Chang|first3 = Andrew Y.-F.|last4 = Zhang|first4 = Jianzhi|date = 2010-10-01|title = डुप्लिकेट जीन का रखरखाव और कम अभिव्यक्ति द्वारा उनकी कार्यात्मक अतिरेक|journal = Trends in Genetics|volume = 26|issue = 10|pages = 425–430|doi = 10.1016/j.tig.2010.07.002|issn = 0168-9525|pmc = 2942974|pmid = 20708291}}</ref> जीनोम में अनावश्यक जीन के बने रहने का कारण सतत प्रश्न है और हर जगह शोधकर्ताओं द्वारा जीन अतिरेक का अध्ययन किया जा रहा है। बैकअप और पिग्गीबैक मॉडल के अलावा अनेक परिकल्पनाएँ हैं। उदाहरण के लिए, मिशिगन विश्वविद्यालय में, अध्ययन यह सिद्धांत प्रदान करता है कि अनावश्यक जीन को कम अभिव्यक्ति द्वारा जीनोम में बनाए रखा जाता है।


Line 37: Line 37:
वर्तमान में, ज्ञात जीनोमिक अनुक्रम में पैरालॉग्स का पता लगाने के तीन तरीके हैं: सरल होमोलॉजी (एफएएसटीए), जीन वर्ग विकास (ट्रीफैम) और ऑर्थोलॉजी (एगएनओजी वी3)। शोधकर्ता अधिकांशतः फाइलोजेनी का निर्माण करते हैं और अतिरेक की पहचान करने के लिए जीनोम की संरचनाओं की तुलना करने के लिए माइक्रोएरे का उपयोग करते हैं।<ref name=":33">Long M, Vankuren NW, Chen S, Vibranovski MD. 2013. New gene evolution: Little did we know. Annu. Rev. Genet. 47:307–333. {{doi|10.1146/annurev-genet-111212-133301.}}</ref> एकाधिक जीनोम की तुलना करने के लिए सिन्टेनिक संरेखण बनाने और ऑर्थोलॉगस क्षेत्रों के विश्लेषण जैसी विधियों का उपयोग किया जाता है। संपूर्ण जोड़ीवार तुलनाओं का उपयोग करके एकल जीनोम को अनावश्यक जीन के लिए स्कैन किया जा सकता है।<ref name=":33" />अनावश्यक जीनों का अधिक श्रमसाध्य विश्लेषण करने से पहले, शोधकर्ता आम तौर पर खुले पढ़ने के फ्रेम की लंबाई और मूक और गैर-मूक उत्परिवर्तन के बीच की दरों की तुलना करके कार्यक्षमता का परीक्षण करते हैं।<ref name=":33" />[[मानव जीनोम परियोजना]] के पूरा होने के पश्चात से, शोधकर्ता मानव जीनोम की अधिक आसानी से व्याख्या करने में सक्षम हैं। यूसीएससी में जीनोम ब्राउज़र जैसे ऑनलाइन डेटाबेस का उपयोग करके, शोधकर्ता अपनी रुचि के जीन के अनुक्रम में होमोलॉजी की तलाश कर सकते हैं।
वर्तमान में, ज्ञात जीनोमिक अनुक्रम में पैरालॉग्स का पता लगाने के तीन तरीके हैं: सरल होमोलॉजी (एफएएसटीए), जीन वर्ग विकास (ट्रीफैम) और ऑर्थोलॉजी (एगएनओजी वी3)। शोधकर्ता अधिकांशतः फाइलोजेनी का निर्माण करते हैं और अतिरेक की पहचान करने के लिए जीनोम की संरचनाओं की तुलना करने के लिए माइक्रोएरे का उपयोग करते हैं।<ref name=":33">Long M, Vankuren NW, Chen S, Vibranovski MD. 2013. New gene evolution: Little did we know. Annu. Rev. Genet. 47:307–333. {{doi|10.1146/annurev-genet-111212-133301.}}</ref> एकाधिक जीनोम की तुलना करने के लिए सिन्टेनिक संरेखण बनाने और ऑर्थोलॉगस क्षेत्रों के विश्लेषण जैसी विधियों का उपयोग किया जाता है। संपूर्ण जोड़ीवार तुलनाओं का उपयोग करके एकल जीनोम को अनावश्यक जीन के लिए स्कैन किया जा सकता है।<ref name=":33" />अनावश्यक जीनों का अधिक श्रमसाध्य विश्लेषण करने से पहले, शोधकर्ता आम तौर पर खुले पढ़ने के फ्रेम की लंबाई और मूक और गैर-मूक उत्परिवर्तन के बीच की दरों की तुलना करके कार्यक्षमता का परीक्षण करते हैं।<ref name=":33" />[[मानव जीनोम परियोजना]] के पूरा होने के पश्चात से, शोधकर्ता मानव जीनोम की अधिक आसानी से व्याख्या करने में सक्षम हैं। यूसीएससी में जीनोम ब्राउज़र जैसे ऑनलाइन डेटाबेस का उपयोग करके, शोधकर्ता अपनी रुचि के जीन के अनुक्रम में होमोलॉजी की तलाश कर सकते हैं।


=== स्तन कैंसर स्वभाव जीन ===
=== स्तन कैंसर स्वभाव जीन                                                   ===
दोहराव की वह विधि जिसके द्वारा अतिरेक होता है, स्तन कैंसर स्वभाव जीनों में वर्गीकरण को प्रभावित करती हुई पाई गई है।<ref name=":05">{{Cite journal|last1=Richardson|first1=Marcy E.|last2=Chong|first2=Hansook|last3=Mu|first3=Wenbo|last4=Conner|first4=Blair R.|last5=Hsuan|first5=Vickie|last6=Willett|first6=Sara|last7=Lam|first7=Stephanie|last8=Tsai|first8=Pei|last9=Pesaran|first9=Tina|last10=Chamberlin|first10=Adam C.|last11=Park|first11=Min-Sun|date=2018-07-28|title=डीएनए ब्रेकप्वाइंट परख से पता चलता है कि स्तन कैंसर की प्रवृत्ति वाले जीनों में वीयूएस वर्गीकरण को कम करने के लिए अधिकांश सकल दोहराव एक साथ होते हैं।|journal=Genetics in Medicine|volume=21|issue=3|pages=683–693|doi=10.1038/s41436-018-0092-7|pmid=30054569|pmc=6752314|issn=1098-3600|doi-access=free}}</ref> सकल दोहराव नैदानिक ​​​​व्याख्या को सम्मिश्र बनाता है क्योंकि यह समझना मुश्किल है कि क्या वे साथ घटित होते हैं। डीएनए ब्रेकप्वाइंट परख जैसी हालिया विधियों का उपयोग अग्रानुक्रम स्थिति निर्धारित करने के लिए किया गया है।<ref name=":05" />बदले में, इन अग्रानुक्रम सकल दोहरावों को रोगजनक स्थिति के लिए अधिक सटीक रूप से जांचा जा सकता है।<ref name=":05" />स्तन कैंसर के खतरे के मूल्यांकन के लिए इस शोध के महत्वपूर्ण निहितार्थ हैं।<ref name=":05" />
दोहराव की वह विधि जिसके द्वारा अतिरेक होता है, स्तन कैंसर स्वभाव जीनों में वर्गीकरण को प्रभावित करती हुई पाई गई है।<ref name=":05">{{Cite journal|last1=Richardson|first1=Marcy E.|last2=Chong|first2=Hansook|last3=Mu|first3=Wenbo|last4=Conner|first4=Blair R.|last5=Hsuan|first5=Vickie|last6=Willett|first6=Sara|last7=Lam|first7=Stephanie|last8=Tsai|first8=Pei|last9=Pesaran|first9=Tina|last10=Chamberlin|first10=Adam C.|last11=Park|first11=Min-Sun|date=2018-07-28|title=डीएनए ब्रेकप्वाइंट परख से पता चलता है कि स्तन कैंसर की प्रवृत्ति वाले जीनों में वीयूएस वर्गीकरण को कम करने के लिए अधिकांश सकल दोहराव एक साथ होते हैं।|journal=Genetics in Medicine|volume=21|issue=3|pages=683–693|doi=10.1038/s41436-018-0092-7|pmid=30054569|pmc=6752314|issn=1098-3600|doi-access=free}}</ref> सकल दोहराव नैदानिक ​​​​व्याख्या को सम्मिश्र बनाता है क्योंकि यह समझना मुश्किल है कि क्या वे साथ घटित होते हैं। डीएनए ब्रेकप्वाइंट परख जैसी हालिया विधियों का उपयोग अग्रानुक्रम स्थिति निर्धारित करने के लिए किया गया है।<ref name=":05" /> परिवर्तित करने में, इन अग्रानुक्रम सकल दोहरावों को रोगजनक स्थिति के लिए अधिक सटीक रूप से जांचा जा सकता है।<ref name=":05" />स्तन कैंसर के खतरे के मूल्यांकन के लिए इस शोध के महत्वपूर्ण निहितार्थ हैं।<ref name=":05" />




=== ट्रिटिसिया घास में रोगज़नक़ प्रतिरोध ===
=== ट्रिटिसिया घास में रोगज़नक़ प्रतिरोध                                                       ===
शोधकर्ताओं ने अनावश्यक जीन की भी पहचान की है जो जीव स्तर पर चयनात्मक लाभ प्रदान करते हैं। आंशिक ARM1 जीन, आंशिक दोहराव से उत्पन्न अनावश्यक जीन, [[घास के फूल]], फफूंदी कवक के प्रति प्रतिरोध प्रदान करने के लिए पाया गया है।<ref name=":12">{{Cite journal|last1=Rajaraman|first1=Jeyaraman|last2=Douchkov|first2=Dimitar|last3=Lück|first3=Stefanie|last4=Hensel|first4=Götz|last5=Nowara|first5=Daniela|last6=Pogoda|first6=Maria|last7=Rutten|first7=Twan|last8=Meitzel|first8=Tobias|last9=Brassac|first9=Jonathan|last10=Höfle|first10=Caroline|last11=Hückelhoven|first11=Ralph|date=2018-08-15|title=घास की ट्रिटिसिया जनजाति में विकासात्मक रूप से संरक्षित आंशिक जीन दोहराव रोगज़नक़ प्रतिरोध प्रदान करता है|journal=Genome Biology|volume=19|issue=1|page=116|doi=10.1186/s13059-018-1472-7|pmid=30111359|pmc=6092874|issn=1474-760X|doi-access=free}}</ref> यह जीन गेहूं, [[राई]] और [[जौ]] सहित [[टीआर आईटी बर्फ एई]] जनजाति के सदस्यों में उपस्तिथ है।<ref name=":12" />
शोधकर्ताओं ने अनावश्यक जीन की भी पहचान की है जो जीव स्तर पर चयनात्मक लाभ प्रदान करते हैं। आंशिक ARM1 जीन, आंशिक दोहराव से उत्पन्न अनावश्यक जीन, [[घास के फूल]], फफूंदी कवक के प्रति प्रतिरोध प्रदान करने के लिए पाया गया है।<ref name=":12">{{Cite journal|last1=Rajaraman|first1=Jeyaraman|last2=Douchkov|first2=Dimitar|last3=Lück|first3=Stefanie|last4=Hensel|first4=Götz|last5=Nowara|first5=Daniela|last6=Pogoda|first6=Maria|last7=Rutten|first7=Twan|last8=Meitzel|first8=Tobias|last9=Brassac|first9=Jonathan|last10=Höfle|first10=Caroline|last11=Hückelhoven|first11=Ralph|date=2018-08-15|title=घास की ट्रिटिसिया जनजाति में विकासात्मक रूप से संरक्षित आंशिक जीन दोहराव रोगज़नक़ प्रतिरोध प्रदान करता है|journal=Genome Biology|volume=19|issue=1|page=116|doi=10.1186/s13059-018-1472-7|pmid=30111359|pmc=6092874|issn=1474-760X|doi-access=free}}</ref> यह जीन गेहूं, [[राई]] और [[जौ]] सहित [[टीआर आईटी बर्फ एई]] जनजाति के सदस्यों में उपस्तिथ है।<ref name=":12" />


Line 48: Line 48:


=== घ्राण रिसेप्टर्स ===
=== घ्राण रिसेप्टर्स ===
मानव घ्राण रिसेप्टर (ओआर) जीन वर्ग में 339 अक्षुण्ण जीन और 297 स्यूडोजेन सम्मिलित हैं। ये जीन पूरे जीनोम में अलग-अलग स्थानों पर पाए जाते हैं, लेकिन केवल 13% ही अलग-अलग गुणसूत्रों पर या दूर-दूर स्थित लोकी पर होते हैं। मनुष्यों में OR जीन के 172 उपवर्ग पाए गए हैं, प्रत्येक का अपना लोकी है। चूँकि इनमें से प्रत्येक उपवर्ग में जीन संरचनात्मक और कार्यात्मक रूप से समान हैं, और एक-दूसरे के करीब हैं, इसलिए यह अनुमान लगाया गया है कि प्रत्येक जीन दोहराव की घटनाओं से गुजरने वाले एकल जीन से विकसित हुआ है। मनुष्यों में उपपरिवारों की उच्च संख्या बताती है कि हम इतनी सारी गंधों को पहचानने में सक्षम क्यों हैं।
मानव घ्राण रिसेप्टर (ओआर) जीन वर्ग में 339 अक्षुण्ण जीन और 297 स्यूडोजेन सम्मिलित हैं। ये जीन पूरे जीनोम में भिन्न-भिन्न स्थानों पर पाए जाते हैं, किन्तु केवल 13% ही भिन्न-भिन्न गुणसूत्रों पर या दूर-दूर स्थित लोकी पर होते हैं। मनुष्यों में OR जीन के 172 उपवर्ग पाए गए हैं, प्रत्येक का अपना लोकी है। चूँकि इनमें से प्रत्येक उपवर्ग में जीन संरचनात्मक और कार्यात्मक रूप से समान हैं, और एक-दूसरे के करीब हैं, इसलिए यह अनुमान लगाया गया है कि प्रत्येक जीन दोहराव की घटनाओं से गुजरने वाले एकल जीन से विकसित हुआ है। मनुष्यों में उपपरिवारों की उच्च संख्या बताती है कि हम इतनी सारी गंधों को पहचानने में सक्षम क्यों हैं।


मानव या चूहों जैसे अन्य स्तनधारियों में जीन के समरूप होते हैं, जो घ्राण रिसेप्टर जीन के विकास को प्रदर्शित करते हैं। गंध बोध की प्रारंभिक घटना में सम्मिलित विशेष वर्ग को संपूर्ण कशेरुकी विकास के समय अत्यधिक संरक्षित पाया गया है।<ref>{{Cite journal|last1=Malnic|first1=Bettina|last2=Godfrey|first2=Paul A.|last3=Buck|first3=Linda B.|date=2004-02-24|title=मानव घ्राण रिसेप्टर जीन परिवार|journal=Proceedings of the National Academy of Sciences of the United States of America|language=en|volume=101|issue=8|pages=2584–2589|doi=10.1073/pnas.0307882100|issn=0027-8424|pmc=356993|pmid=14983052|bibcode=2004PNAS..101.2584M|doi-access=free}}</ref>
मानव या चूहों जैसे अन्य स्तनधारियों में जीन के समरूप होते हैं, जो घ्राण रिसेप्टर जीन के विकास को प्रदर्शित करते हैं। गंध बोध की प्रारंभिक घटना में सम्मिलित विशेष वर्ग को संपूर्ण कशेरुकी विकास के समय अत्यधिक संरक्षित पाया गया है।<ref>{{Cite journal|last1=Malnic|first1=Bettina|last2=Godfrey|first2=Paul A.|last3=Buck|first3=Linda B.|date=2004-02-24|title=मानव घ्राण रिसेप्टर जीन परिवार|journal=Proceedings of the National Academy of Sciences of the United States of America|language=en|volume=101|issue=8|pages=2584–2589|doi=10.1073/pnas.0307882100|issn=0027-8424|pmc=356993|pmid=14983052|bibcode=2004PNAS..101.2584M|doi-access=free}}</ref>

Revision as of 18:13, 7 August 2023

जीन अतिरेक जीव के जीनोम में अनेक जीनों का अस्तित्व है जो ही कार्य करते हैं। जीन अतिरेक जीन दोहराव के परिणामस्वरूप हो सकता है।[1] इस तरह की दोहराव की घटनाएँ निरर्थक जीन के अनेक सेटों के लिए ज़िम्मेदार हैं।[1] जब ऐसे सेट में व्यक्तिगत जीन उत्परिवर्तन या लक्षित जीन नॉकआउट द्वारा बाधित होता है, तो जीन अतिरेक के परिणामस्वरूप फेनोटाइप पर बहुत कम प्रभाव हो सकता है, जबकि केवल प्रतिलिपि वाले जीन के नॉकआउट के लिए प्रभाव बड़ा होता है।[2] जीन नॉकआउट कुछ अध्ययनों में उपयोग की जाने वाली विधि है जिसका उद्देश्य रखरखाव और फिटनेस प्रभावों के कार्यात्मक ओवरलैप को चिह्नित करना है।[3]

मेंटेनेंस के मौलिक मॉडल का प्रस्ताव है कि फ़ंक्शन उत्परिवर्तन के हानिकारक हानि की भरपाई करने की उनकी क्षमता के कारण डुप्लिकेट जीन को जीनोम में विभिन्न सीमा तक संरक्षित किया जा सकता है।[4][5] यह मौलिक मॉडल सकारात्मक चयन के संभावित प्रभाव को ध्यान में नहीं रखते हैं। इन मौलिक मॉडलों से परे, शोधकर्ता उन तंत्रों का पता लगाना जारी रखते हैं जिनके द्वारा अनावश्यक जीन बनाए रखे जाते हैं और विकसित होते हैं।[6][7][8] जीन अतिरेक को नवीन जीन उत्पत्ति के स्रोत के रूप में लंबे समय से सराहा गया है;[8] अर्थात्, जब डुप्लिकेट पर चयनात्मक दबाव उपस्तिथ होता है तो नए जीन उत्पन्न हो सकते हैं, जबकि मूल जीन को मूल कार्य करने के लिए बनाए रखा जाता है, जैसा कि नए मॉडल द्वारा प्रस्तावित है[4].

चित्रा 1. जीन दोहराव के सामान्य तंत्र।

निरर्थक जीन की उत्पत्ति और विकास

जीन अतिरेक अधिकांशतः जीन दोहराव के परिणामस्वरूप होता है।[9] जीन दोहराव के तीन अधिक सामान्य तंत्र रेट्रोपोसॉन, असमान क्रोमोसोमल क्रॉसओवर और गैर-होमोलॉगस खंडीय दोहराव हैं। रिट्रोपोजिशन तब होता है जब किसी जीन के एमआरएनए प्रतिलेख को डीएनए में रिवर्स ट्रांसक्रिप्ट किया जाता है और भिन्न स्थान पर जीनोम में डाला जाता है। असमान क्रॉसिंग ओवर के समय, होमोलॉजी (जीवविज्ञान) गुणसूत्र अपने डीएनए के असमान हिस्सों का आदान-प्रदान करते हैं। इससे गुणसूत्र के जीन को दूसरे गुणसूत्र में स्थानांतरित किया जा सकता है, जिससे गुणसूत्र पर दो समान जीन रह जाते हैं और दूसरे गुणसूत्र पर जीन की कोई प्रति नहीं रह जाती है। गैर-समरूप दोहराव, प्रतिकृति त्रुटियों के परिणामस्वरूप होता है जो रुचि के जीन को नई स्थिति में स्थानांतरित कर देता है। फिर अग्रानुक्रम दोहराव होता है, जिससे ही जीन की दो प्रतियों के साथ गुणसूत्र बनता है। चित्र 1 इन तीन तंत्रों का दृश्य प्रदान करता है।[10] जब जीन को जीनोम के अंदर दोहराया जाता है, तो दो प्रतियां प्रारंभ में कार्यात्मक रूप से अनावश्यक होती हैं। इन निरर्थक जीनों को परलोक माना जाता है क्योंकि वे समय के साथ परिवर्तन संग्रहित करते हैं, जब तक कि वे कार्यात्मक रूप से भिन्न नहीं हो जाते।[11]

अधिकांश शोध इस प्रश्न पर केंद्रित है कि अनावश्यक जीन कैसे बने रहते हैं।[12] निरर्थक जीनों के संरक्षण को समझाने का प्रयास करने के लिए तीन मॉडल सामने आए हैं: जो कि कुछ इस प्रकार है अनुकूली विकिरण, विचलन, और अनुकूली संघर्ष से बचना आदि। विशेष रूप से, दोहराव की घटना के पश्चात प्रतिधारण दोहराव की घटना के प्रकार और जीन वर्ग के प्रकार से प्रभावित होता है। अर्थात्, कुछ जीन वर्ग छोटे मापदंड पर दोहराव या संपूर्ण जीनोम दोहराव घटना के पश्चात अतिरेक के लिए उत्तम तथा अनुकूल हैं।[13] निरर्थक जीनों के जीवित रहने की अधिक संभावना होती है जब वह सम्मिश्र मार्गों में सम्मिलित होते हैं और संपूर्ण जीनोम दोहराव या बहुवर्ग दोहराव के उत्पाद होते हैं।[13]

एकल जीन डुप्लिकेट के लिए वर्तमान में स्वीकृत परिणामों में सम्मिलित हैं: तथा जहाँ जीन हानि (गैर-कार्यात्मकता), कार्यात्मक विचलन, और बढ़ी हुई आनुवंशिक दृढ़ता के लिए संरक्षण होते है।[11] अन्यथा, बहुजीन वर्ग ठोस विकास, या जन्म और मृत्यु विकास से गुजर सकते हैं।[11] ठोस विकास यह विचार है कि समूह में जीन, जैसे कि जीन परिवार, समानांतर रूप से में विकसित होते हैं।[11] तथा जन्म मृत्यु विकास की अवधारणा यह होती है कि जीन वर्ग शक्तिशाली शुद्धिकरण चयन से गुजरता है।[11]



कार्यात्मक विचलन

चूंकि जीनोम अनेक पीढ़ियों तक प्रतिकृति बनाता है, जहाँ अनावश्यक जीन का कार्य आनुवंशिक प्रवाह के कारण विकसित होने की सबसे अधिक संभावना है। आनुवंशिक प्रवाह या तो विविधताओं को समाप्त करके या जनसंख्या में भिन्नताओं को ठीक करके आनुवंशिक अतिरेक को प्रभावित करता है।[12] इस घटना में कि आनुवंशिक प्रवाह वेरिएंट को बनाए रखता है, जीन उत्परिवर्तन संग्रहित कर सकता है जो कि समग्र कार्य को परिवर्तित कर देता है।[14] चूँकि, अनेक अनावश्यक जीन भिन्न-भिन्न हो सकते हैं किन्तु सबफ़ंक्शनलाइज़ेशन जैसे तंत्र द्वारा मूल कार्य को बनाए रखते हैं, जो डुप्लिकेट की पूरक कार्रवाई के अतिरिक्त मूल जीन फ़ंक्शन को संरक्षित करता है।[13][12] जीन में कार्यात्मक विचलन के तीन तंत्र हैं जैसे नॉनफंक्शनलाइजेशन (या जीन हानि), नियोफंक्शनलाइजेशन और सबफंक्शनलाइजेशन आदि ।[11]

इस प्रकार की अक्रियाशीलता, या अध:पतन/जीन हानि के समय, डुप्लिकेट जीन की प्रति उत्परिवर्तन प्राप्त करती है जो इसे निष्क्रिय कर देती है या जीन को शांत कर देती है। गैर-कार्यात्मकता अधिकांशतः एकल जीन दोहराव का परिणाम होती है।[11] इस समय, जीन का कोई कार्य नहीं होता है और इसे स्यूडोजीन कहा जाता है। आनुवंशिक उत्परिवर्तन के कारण स्यूडोजेन समय के साथ नष्ट हो सकते हैं। नियोफ़ंक्शनलाइज़ेशन तब होता है जब जीन की प्रति उत्परिवर्तन संग्रहित करती है जो जीन को नया, लाभकारी कार्य देती है जो मूल कार्य से भिन्न होती है। सबफ़ंक्शनलाइज़ेशन तब होता है जब निरर्थक जीन की दोनों प्रतियां उत्परिवर्तन प्राप्त कर लेती हैं। प्रत्येक प्रतिलिपि केवल आंशिक रूप से सक्रिय होती है; इनमें से दो आंशिक प्रतियाँ मूल जीन की सामान्य प्रति के रूप में कार्य करती हैं। दाईं ओर चित्र 2 इस अवधारणा का दृश्य प्रदान करता है।

ट्रांसपोज़ेबल अवयव

ट्रांसपोज़ेबल अवयव कार्यात्मक विभेदन में विभिन्न भूमिकाएँ निभाते हैं। पुनर्संयोजन क्रियान्वित करके, ट्रांसपोज़ेबल अवयव जीनोम में अनावश्यक अनुक्रमों को स्थानांतरित कर सकते हैं।[15] इस प्रकार के अनुक्रम संरचना और स्थान में यह परिवर्तन कार्यात्मक विचलन का स्रोत है।[15] जहाँ ट्रांसपोज़ेबल अवयव संभावित रूप से जीन अभिव्यक्ति को प्रभावित करते हैं, यह देखते हुए कि उनमें बड़ी मात्रा में माइक्रो-आरएनए होते हैं।[15]


जीन रखरखाव परिकल्पना

निरर्थक जीनों का विकास और उत्पत्ति मुख्यतः अज्ञात रहती है, क्योंकि विकास इतनी लंबी अवधि में होता है। सैद्धांतिक रूप से, जीन को उत्परिवर्तन के बिना तब तक बनाए नहीं रखा जा सकता जब तक कि उस पर चयनात्मक दबाव न हो। इसलिए, जीन अतिरेक, जीन की दोनों प्रतियों को उत्परिवर्तन संग्रहित करने की अनुमति देगा, जब तक कि दूसरा अभी भी अपना कार्य करने में सक्षम है। इसका मतलब यह है कि सभी अनावश्यक जीन सैद्धांतिक रूप से छद्म जीन बन जाएंगे और अंततः नष्ट हो जाएंगे। वैज्ञानिकों ने दो परिकल्पनाएँ तैयार की हैं कि क्यों अनावश्यक जीन जीनोम में रह सकते हैं: बैकअप परिकल्पना और पिग्गीबैक परिकल्पना।[16] बैकअप परिकल्पना का प्रस्ताव है कि अनावश्यक जीन प्रकार की बैक-अप योजना के रूप में जीनोम में रहते हैं। यदि मूल जीन अपना कार्य खो देता है, तो अनावश्यक जीन कोशिका पर कब्ज़ा कर लेता है और उसे जीवित रखता है। पिग्गीबैक परिकल्पना में कहा गया है कि जीनोम में दो परलॉग में कुछ प्रकार के गैर-अतिव्यापी फ़ंक्शन के साथ-साथ अनावश्यक फ़ंक्शन भी होते हैं। इस मामले में, जीन का अनावश्यक हिस्सा उस क्षेत्र की निकटता के कारण जीनोम में रहता है जो अद्वितीय कार्य के लिए कोड करता है।[17] जीनोम में अनावश्यक जीन के बने रहने का कारण सतत प्रश्न है और हर जगह शोधकर्ताओं द्वारा जीन अतिरेक का अध्ययन किया जा रहा है। बैकअप और पिग्गीबैक मॉडल के अलावा अनेक परिकल्पनाएँ हैं। उदाहरण के लिए, मिशिगन विश्वविद्यालय में, अध्ययन यह सिद्धांत प्रदान करता है कि अनावश्यक जीन को कम अभिव्यक्ति द्वारा जीनोम में बनाए रखा जाता है।

अनुसंधान

जीन वर्ग और फाइलोजेनी

किसी प्रजाति की फाइलोजेनी के बारे में जानने के लिए शोधकर्ता अधिकांशतः जीन वर्ग के रूप में अनावश्यक जीन के इतिहास का उपयोग करते हैं। अनावश्यक जीनों को कार्यात्मक विविधीकरण से गुजरने में समय लगता है; ऑर्थोलॉग्स के बीच विविधीकरण की डिग्री हमें बताती है कि दोनों जीनोम कितने निकट से संबंधित हैं। जीन दोहराव में वृद्धि को देखकर भी जीन दोहराव की घटनाओं का पता लगाया जा सकता है।

विकासवादी अध्ययनों में जीन अतिरेक का उपयोग करने का अच्छा उदाहरण पौधों में KCS जीन वर्ग का विकास है। यह पेपर अध्ययन करता है कि कैसे केसीएस जीन दोहराव की घटनाओं के माध्यम से पूरे जीन वर्ग में विकसित हुआ। प्रजातियों में अनावश्यक जीनों की संख्या शोधकर्ताओं को यह निर्धारित करने की अनुमति देती है कि दोहराव की घटनाएँ कब हुईं और प्रजातियाँ कितनी निकटता से संबंधित हैं।

निरर्थक जीनों का पता लगाना और उनका लक्षण वर्णन करना

वर्तमान में, ज्ञात जीनोमिक अनुक्रम में पैरालॉग्स का पता लगाने के तीन तरीके हैं: सरल होमोलॉजी (एफएएसटीए), जीन वर्ग विकास (ट्रीफैम) और ऑर्थोलॉजी (एगएनओजी वी3)। शोधकर्ता अधिकांशतः फाइलोजेनी का निर्माण करते हैं और अतिरेक की पहचान करने के लिए जीनोम की संरचनाओं की तुलना करने के लिए माइक्रोएरे का उपयोग करते हैं।[18] एकाधिक जीनोम की तुलना करने के लिए सिन्टेनिक संरेखण बनाने और ऑर्थोलॉगस क्षेत्रों के विश्लेषण जैसी विधियों का उपयोग किया जाता है। संपूर्ण जोड़ीवार तुलनाओं का उपयोग करके एकल जीनोम को अनावश्यक जीन के लिए स्कैन किया जा सकता है।[18]अनावश्यक जीनों का अधिक श्रमसाध्य विश्लेषण करने से पहले, शोधकर्ता आम तौर पर खुले पढ़ने के फ्रेम की लंबाई और मूक और गैर-मूक उत्परिवर्तन के बीच की दरों की तुलना करके कार्यक्षमता का परीक्षण करते हैं।[18]मानव जीनोम परियोजना के पूरा होने के पश्चात से, शोधकर्ता मानव जीनोम की अधिक आसानी से व्याख्या करने में सक्षम हैं। यूसीएससी में जीनोम ब्राउज़र जैसे ऑनलाइन डेटाबेस का उपयोग करके, शोधकर्ता अपनी रुचि के जीन के अनुक्रम में होमोलॉजी की तलाश कर सकते हैं।

स्तन कैंसर स्वभाव जीन

दोहराव की वह विधि जिसके द्वारा अतिरेक होता है, स्तन कैंसर स्वभाव जीनों में वर्गीकरण को प्रभावित करती हुई पाई गई है।[19] सकल दोहराव नैदानिक ​​​​व्याख्या को सम्मिश्र बनाता है क्योंकि यह समझना मुश्किल है कि क्या वे साथ घटित होते हैं। डीएनए ब्रेकप्वाइंट परख जैसी हालिया विधियों का उपयोग अग्रानुक्रम स्थिति निर्धारित करने के लिए किया गया है।[19] परिवर्तित करने में, इन अग्रानुक्रम सकल दोहरावों को रोगजनक स्थिति के लिए अधिक सटीक रूप से जांचा जा सकता है।[19]स्तन कैंसर के खतरे के मूल्यांकन के लिए इस शोध के महत्वपूर्ण निहितार्थ हैं।[19]


ट्रिटिसिया घास में रोगज़नक़ प्रतिरोध

शोधकर्ताओं ने अनावश्यक जीन की भी पहचान की है जो जीव स्तर पर चयनात्मक लाभ प्रदान करते हैं। आंशिक ARM1 जीन, आंशिक दोहराव से उत्पन्न अनावश्यक जीन, घास के फूल, फफूंदी कवक के प्रति प्रतिरोध प्रदान करने के लिए पाया गया है।[20] यह जीन गेहूं, राई और जौ सहित टीआर आईटी बर्फ एई जनजाति के सदस्यों में उपस्तिथ है।[20]


मानव निरर्थक जीन

घ्राण रिसेप्टर्स

मानव घ्राण रिसेप्टर (ओआर) जीन वर्ग में 339 अक्षुण्ण जीन और 297 स्यूडोजेन सम्मिलित हैं। ये जीन पूरे जीनोम में भिन्न-भिन्न स्थानों पर पाए जाते हैं, किन्तु केवल 13% ही भिन्न-भिन्न गुणसूत्रों पर या दूर-दूर स्थित लोकी पर होते हैं। मनुष्यों में OR जीन के 172 उपवर्ग पाए गए हैं, प्रत्येक का अपना लोकी है। चूँकि इनमें से प्रत्येक उपवर्ग में जीन संरचनात्मक और कार्यात्मक रूप से समान हैं, और एक-दूसरे के करीब हैं, इसलिए यह अनुमान लगाया गया है कि प्रत्येक जीन दोहराव की घटनाओं से गुजरने वाले एकल जीन से विकसित हुआ है। मनुष्यों में उपपरिवारों की उच्च संख्या बताती है कि हम इतनी सारी गंधों को पहचानने में सक्षम क्यों हैं।

मानव या चूहों जैसे अन्य स्तनधारियों में जीन के समरूप होते हैं, जो घ्राण रिसेप्टर जीन के विकास को प्रदर्शित करते हैं। गंध बोध की प्रारंभिक घटना में सम्मिलित विशेष वर्ग को संपूर्ण कशेरुकी विकास के समय अत्यधिक संरक्षित पाया गया है।[21]


रोग

दोहराव की घटनाओं और अनावश्यक जीनों की अधिकांशतः कुछ मानव रोगों में भूमिका मानी जाती है। बड़े मापदंड पर संपूर्ण जीनोम दोहराव की घटनाएं जो कशेरुक विकास की शुरुआत में हुईं, यही कारण हो सकता है कि मानव मोनोजेनिक रोग जीन में अधिकांशतः बड़ी संख्या में अनावश्यक जीन होते हैं। चेन एट अल. परिकल्पना है कि मानव मोनोजेनिक रोग जीन में कार्यात्मक रूप से निरर्थक पैरालॉग प्रमुख हानिकारक उत्परिवर्तन के प्रभावों को छुपाते हैं, जिससे मानव जीनोम में रोग जीन बना रहता है।[22] संपूर्ण जीनोम दोहराव मानव जीनोम में ट्यूमर पैदा करने वाले कुछ जीनों के बने रहने का प्रमुख कारण हो सकता है।[23] उदाहरण के लिए, स्ट्राउट एट अल।[24] दिखाया गया है कि अग्रानुक्रम दोहराव की घटनाएं, संभवतः सजातीय पुनर्संयोजन के माध्यम से, सूक्ष्म अधिश्वेत रक्तता से जुड़ी हुई हैं। ALL1 (MLL) जीन का आंशिक दोहराव आनुवंशिक दोष है जो तीव्र माइलॉयड ल्यूकेमिया वाले रोगियों में पाया गया है।

संदर्भ

  1. 1.0 1.1 Conrad, Bernard; Antonarakis, Stylianos E. (September 2007). "Gene Duplication: A Drive for Phenotypic Diversity and Cause of Human Disease". Annual Review of Genomics and Human Genetics (in English). 8 (1): 17–35. doi:10.1146/annurev.genom.8.021307.110233. ISSN 1527-8204. PMID 17386002.
  2. Pérez-Pérez JM, Candela H, Micol JL (August 2009). "आनुवंशिक अंतःक्रियाओं में तालमेल को समझना". Trends Genet. 25 (8): 368–76. doi:10.1016/j.tig.2009.06.004. PMID 19665253.
  3. Pérez-Pérez, José Manuel; Candela, Héctor; Micol, José Luis (2009-08-01). "आनुवंशिक अंतःक्रियाओं में तालमेल को समझना". Trends in Genetics (in English). 25 (8): 368–376. doi:10.1016/j.tig.2009.06.004. ISSN 0168-9525. PMID 19665253.
  4. 4.0 4.1 Nowak MA, Boerlijst MC, Cooke J, Smith JM. 1997. nowak_smith_1997_evolution_of_genetic_redundancy_Nature97. 275:1–5. sftp://cerca@192.168.2.5/home/cerca/Desktop/data/laptop_files/info/biologia/filogeny_evolution/evolution_multigene_families/nowak_smith_1997_evolution_of_genetic_redundancy_Nature97.pdf%5Cnpapers2://publication/uuid/BFCD7B63-4802-4C83-96AE-A2ED496127F3.
  5. Martienssen, Rob; Irish, Vivian (1999-11-01). "Copying out our ABCs: the role of gene redundancy in interpreting genetic hierarchies". Trends in Genetics (in English). 15 (11): 435–437. doi:10.1016/S0168-9525(99)01833-8. ISSN 0168-9525. PMID 10529802.
  6. Conrad, Bernard; Antonarakis, Stylianos E. (September 2007). "Gene Duplication: A Drive for Phenotypic Diversity and Cause of Human Disease". Annual Review of Genomics and Human Genetics (in English). 8 (1): 17–35. doi:10.1146/annurev.genom.8.021307.110233. ISSN 1527-8204. PMID 17386002.
  7. Force A et al. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 151:1531–1545.
  8. 8.0 8.1 Long M, Vankuren NW, Chen S, Vibranovski MD. 2013. New gene evolution: Little did we know. Annu. Rev. Genet. 47:307–333. doi:10.1146/annurev-genet-111212-133301.
  9. Wagner, Andreas (1996-06-01). "जीन दोहराव और ट्रांसक्रिप्शनल नियामकों के नेटवर्क में इसके विकास के कारण आनुवंशिक अतिरेक". Biological Cybernetics (in English). 74 (6): 557–567. doi:10.1007/BF00209427. ISSN 1432-0770. PMID 8672563. S2CID 8616418.
  10. Hurles, Matthew (2004-07-13). "Gene Duplication: The Genomic Trade in Spare Parts". PLOS Biology (in English). 2 (7): e206. doi:10.1371/journal.pbio.0020206. ISSN 1545-7885. PMC 449868. PMID 15252449.
  11. 11.0 11.1 11.2 11.3 11.4 11.5 11.6 Conrad, Bernard; Antonarakis, Stylianos E. (September 2007). "Gene Duplication: A Drive for Phenotypic Diversity and Cause of Human Disease". Annual Review of Genomics and Human Genetics (in English). 8 (1): 17–35. doi:10.1146/annurev.genom.8.021307.110233. ISSN 1527-8204. PMID 17386002.
  12. 12.0 12.1 12.2 Long M, Vankuren NW, Chen S, Vibranovski MD. 2013. New gene evolution: Little did we know. Annu. Rev. Genet. 47:307–333. doi:10.1146/annurev-genet-111212-133301.
  13. 13.0 13.1 13.2 Conant, G. C.; Wolfe, K. H. (2008). "Turning a hobby into a job: How duplicated genes find new functions". Nature Reviews Genetics (in English). 9 (12): 938–950. doi:10.1038/nrg2482. PMID 19015656. S2CID 1240225.
  14. Force A et al. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 151:1531–1545.
  15. 15.0 15.1 15.2 Platt, Roy N.; Vandewege, Michael W.; Ray, David A. (March 2018). "स्तनधारी ट्रांसपोज़ेबल तत्व और जीनोम विकास पर उनके प्रभाव". Chromosome Research (in English). 26 (1–2): 25–43. doi:10.1007/s10577-017-9570-z. ISSN 0967-3849. PMC 5857283. PMID 29392473.
  16. Zhang, Jianzhi (2012). "आनुवंशिक अतिरेक और उनका विकासवादी रखरखाव". Evolutionary Systems Biology Advances in Experimental Medicine and Biology. Advances in Experimental Medicine and Biology. 751: 279–300. doi:10.1007/978-1-4614-3567-9_13. ISBN 978-1-4614-3566-2. PMID 22821463.
  17. Qian, Wenfeng; Liao, Ben-Yang; Chang, Andrew Y.-F.; Zhang, Jianzhi (2010-10-01). "डुप्लिकेट जीन का रखरखाव और कम अभिव्यक्ति द्वारा उनकी कार्यात्मक अतिरेक". Trends in Genetics. 26 (10): 425–430. doi:10.1016/j.tig.2010.07.002. ISSN 0168-9525. PMC 2942974. PMID 20708291.
  18. 18.0 18.1 18.2 Long M, Vankuren NW, Chen S, Vibranovski MD. 2013. New gene evolution: Little did we know. Annu. Rev. Genet. 47:307–333. doi:10.1146/annurev-genet-111212-133301.
  19. 19.0 19.1 19.2 19.3 Richardson, Marcy E.; Chong, Hansook; Mu, Wenbo; Conner, Blair R.; Hsuan, Vickie; Willett, Sara; Lam, Stephanie; Tsai, Pei; Pesaran, Tina; Chamberlin, Adam C.; Park, Min-Sun (2018-07-28). "डीएनए ब्रेकप्वाइंट परख से पता चलता है कि स्तन कैंसर की प्रवृत्ति वाले जीनों में वीयूएस वर्गीकरण को कम करने के लिए अधिकांश सकल दोहराव एक साथ होते हैं।". Genetics in Medicine. 21 (3): 683–693. doi:10.1038/s41436-018-0092-7. ISSN 1098-3600. PMC 6752314. PMID 30054569.
  20. 20.0 20.1 Rajaraman, Jeyaraman; Douchkov, Dimitar; Lück, Stefanie; Hensel, Götz; Nowara, Daniela; Pogoda, Maria; Rutten, Twan; Meitzel, Tobias; Brassac, Jonathan; Höfle, Caroline; Hückelhoven, Ralph (2018-08-15). "घास की ट्रिटिसिया जनजाति में विकासात्मक रूप से संरक्षित आंशिक जीन दोहराव रोगज़नक़ प्रतिरोध प्रदान करता है". Genome Biology. 19 (1): 116. doi:10.1186/s13059-018-1472-7. ISSN 1474-760X. PMC 6092874. PMID 30111359.
  21. Malnic, Bettina; Godfrey, Paul A.; Buck, Linda B. (2004-02-24). "मानव घ्राण रिसेप्टर जीन परिवार". Proceedings of the National Academy of Sciences of the United States of America (in English). 101 (8): 2584–2589. Bibcode:2004PNAS..101.2584M. doi:10.1073/pnas.0307882100. ISSN 0027-8424. PMC 356993. PMID 14983052.
  22. Chen, Wei-Hua; Zhao, Xing-Ming; van Noort, Vera; Bork, Peer (2013-05-01). "मानव मोनोजेनिक रोग जीन में अक्सर कार्यात्मक रूप से निरर्थक पैरालॉग होते हैं". PLOS Computational Biology. 9 (5): e1003073. Bibcode:2013PLSCB...9E3073C. doi:10.1371/journal.pcbi.1003073. ISSN 1553-734X. PMC 3656685. PMID 23696728.
  23. Malaguti, Giulia; Singh, Param Priya; Isambert, Hervé (2014-05-01). "जीन डुप्लिकेट के प्रतिधारण पर प्रमुख हानिकारक उत्परिवर्तन का खतरा होता है". Theoretical Population Biology. 93: 38–51. doi:10.1016/j.tpb.2014.01.004. ISSN 1096-0325. PMID 24530892.
  24. Strout, Matthew P.; Marcucci, Guido; Bloomfield, Clara D.; Caligiuri, Michael A. (1998-03-03). "ALL1 (MLL) का आंशिक अग्रानुक्रम दोहराव तीव्र माइलॉयड ल्यूकेमिया में अलु-मध्यस्थता वाले समजात पुनर्संयोजन द्वारा लगातार उत्पन्न होता है". Proceedings of the National Academy of Sciences of the United States of America. 95 (5): 2390–2395. Bibcode:1998PNAS...95.2390S. doi:10.1073/pnas.95.5.2390. ISSN 0027-8424. PMC 19353. PMID 9482895.


अग्रिम पठन

  1. Guo, Hai-Song; Zhang, Yan-Mei; Sun, Xiao-Qin; Li, Mi-Mi; Hang, Yue-Yu; Xue, Jia-Yu (2015-11-12). "Evolution of the KCS gene family in plants: the history of gene duplication, sub/neofunctionalization and redundancy". Molecular Genetics and Genomics (in English). 291 (2): 739–752. doi:10.1007/s00438-015-1142-3. ISSN 1617-4615. PMID 26563433. S2CID 18320216.