दृश्य कारक: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
अवतल सतहों के लिए, यह प्रयुक्त नहीं होता है, और इसी प्रकार अवतल सतहों के लिए भी <math>F_{A \rarr A} > 0</math> प्रयुक्त नहीं होता हैं | | अवतल सतहों के लिए, यह प्रयुक्त नहीं होता है, और इसी प्रकार अवतल सतहों के लिए भी <math>F_{A \rarr A} > 0</math> प्रयुक्त नहीं होता हैं | | ||
==सुपरपोज़िशन नियम== | ==सुपरपोज़िशन नियम== | ||
सुपरपोज़िशन नियम (या योग नियम) तब उपयोगी होता है जब दिए गए चार्ट या ग्राफ़ के साथ निश्चित ज्यामिति उपलब्ध नहीं होता है। सुपरपोज़िशन नियम हमें ज्ञात ज्यामिति के योग या अंतर का उपयोग करके उस ज्यामिति को व्यक्त करने की अनुमति देता है जिसे खोजा जा रहा है। | सुपरपोज़िशन नियम (या योग नियम) तब उपयोगी होता है जब दिए गए चार्ट या ग्राफ़ के साथ निश्चित ज्यामिति उपलब्ध नहीं होता है। सुपरपोज़िशन नियम हमें ज्ञात ज्यामिति के योग या अंतर का उपयोग करके उस ज्यामिति को व्यक्त करने की अनुमति देता है जिसे खोजा जा रहा है। | ||
:<math>F_{1 \rarr (2,3)}=F_{1 \rarr 2}+F_{1\rarr 3}</math> <ref>Heat and Mass Transfer, Yunus A. Cengel and Afshin J. Ghajar, 4th Edition</ref> | :<math>F_{1 \rarr (2,3)}=F_{1 \rarr 2}+F_{1\rarr 3}</math> <ref>Heat and Mass Transfer, Yunus A. Cengel and Afshin J. Ghajar, 4th Edition</ref> | ||
== पारस्परिकता == | == पारस्परिकता == | ||
दृश्य कारकों के लिए पारस्परिकता प्रमेय किसी को <math>F_{B \rarr A}</math> की गणना करने की अनुमति देता है यदि कोई पूर्व से ही <math>F_{A \rarr B}</math> जानता है। इस प्रकार दो सतहों <math>A_A </math> और <math>A_B </math> के क्षेत्रों का उपयोग करके प्राप्त किया जाता हैं | दृश्य कारकों के लिए पारस्परिकता प्रमेय किसी को <math>F_{B \rarr A}</math> की गणना करने की अनुमति देता है यदि कोई पूर्व से ही <math>F_{A \rarr B}</math> जानता है। इस प्रकार दो सतहों <math>A_A </math> और <math>A_B </math> के क्षेत्रों का उपयोग करके प्राप्त किया जाता हैं | ||
: <math>A_A F_{A \rarr B} = A_B F_{B \rarr A}</math> | : <math>A_A F_{A \rarr B} = A_B F_{B \rarr A}</math> | ||
== विभेदक क्षेत्रों के कारक देखें == | == विभेदक क्षेत्रों के कारक देखें == | ||
Line 53: | Line 47: | ||
== यह भी देखें == | == यह भी देखें == | ||
* | * रेडियोसिटी (ऊष्मा स्थानांतरण), अनेक निकायों के मध्य विकिरण हस्तांतरण का समाधान करने के लिए आव्युह गणना विधि हैं। | ||
* गेभर्ट फैक्टर, किसी भी संख्या में सतहों के मध्य विकिरण स्थानांतरण समस्याओं का समाधान करने के लिए अभिव्यक्ति होता हैं। | * गेभर्ट फैक्टर, किसी भी संख्या में सतहों के मध्य विकिरण स्थानांतरण समस्याओं का समाधान करने के लिए अभिव्यक्ति होता हैं। | ||
== संदर्भ == | == संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
A large number of 'standard' view factors can be calculated with the use of tables that are commonly provided in [[heat transfer]] textbooks. | A large number of 'standard' view factors can be calculated with the use of tables that are commonly provided in [[heat transfer]] textbooks. | ||
* [http://www.thermalradiation.net/indexCat.html List of view factors for specific geometry cases] | * [http://www.thermalradiation.net/indexCat.html List of view factors for specific geometry cases] | ||
* [http://view3d.sourceforge.net/ View3D], a computer program ([[FOSS]]) for calculating view factors in 2D and 3D. | * [http://view3d.sourceforge.net/ View3D], a computer program ([[FOSS]]) for calculating view factors in 2D and 3D. | ||
{{DEFAULTSORT:View Factor}}[[Category: गर्मी का हस्तांतरण]] | {{DEFAULTSORT:View Factor}}[[Category: गर्मी का हस्तांतरण]] | ||
Revision as of 13:27, 10 August 2023
विकिरणीय ताप स्थानांतरण में, दृश्य कारक, , सतह से निकलने विकिरण का अनुपात है जो सतह से टकराता है। ऐसे सम्मिश्र 'दृश्य' में अनेक संख्या में विभिन्न वस्तुएँ हो सकती हैं, जिन्हें निरंतर और भी अधिक सतहों और सतह खंडों में विभाजित किया जा सकता है। दृश्य कारकों को कभी-कभी विन्यास कारक, रूप कारक, कोण कारक या आकार कारक के रूप में भी जाना जाता है।
दृश्य कारकों का योग
क्योंकि किसी सतह से निकलने वाला विकिरण संरक्षित रहता है, किसी दी गई सतह से सभी दृश्य कारकों का योग, , 1 (संख्या) होता है
उदाहरण के लिए, ऐसी स्तिथि पर विचार करें जहां A और B सतहों वाली दो बूँदें सतह C वाली गुहा में चारों ओर तैर रही हैं। इसमें A से निकलने वाले सभी विकिरण को तब B या C से टकराना चाहिए, या यदि A अवतल है, तब यह A से टकरा सकता है। इस प्रकार 100 A से निकलने वाले विकिरण का % A , B और C में विभाजित होता है।
लक्ष्य सतह पर आने वाले विकिरण पर विचार करते समय इसमें प्रायः भ्रम उत्पन्न होता है। उस स्थिति में, सामान्यतः दृश्य कारकों का योग करने का कोई अर्थ नहीं होता है क्योंकि A से दृश्य कारक और B (ऊपर) से दृश्य कारक में अनिवार्य रूप से भिन्न-भिन्न इकाइयां होती हैं। यह C , A के विकिरण का 10% और B के विकिरण का 50% और C के विकिरण का 20% देख सकता है, किन्तु यह जाने बिना कि यह प्रत्येक में कितना विकिरण करता है, इसको कहने का कोई अर्थ नहीं है कि C को 80% विकिरण प्राप्त होता है।
स्वयं देखने वाली सतहें
उत्तल सतह के लिए, कोई भी विकिरण सतह को छोड़ने के पश्चात् उस पर नहीं गिर सकती है, क्योंकि विकिरण सीधी रेखाओं में यात्रा करता है। इसलिए, उत्तल सतहों के लिए,
अवतल सतहों के लिए, यह प्रयुक्त नहीं होता है, और इसी प्रकार अवतल सतहों के लिए भी प्रयुक्त नहीं होता हैं |
सुपरपोज़िशन नियम
सुपरपोज़िशन नियम (या योग नियम) तब उपयोगी होता है जब दिए गए चार्ट या ग्राफ़ के साथ निश्चित ज्यामिति उपलब्ध नहीं होता है। सुपरपोज़िशन नियम हमें ज्ञात ज्यामिति के योग या अंतर का उपयोग करके उस ज्यामिति को व्यक्त करने की अनुमति देता है जिसे खोजा जा रहा है।
पारस्परिकता
दृश्य कारकों के लिए पारस्परिकता प्रमेय किसी को की गणना करने की अनुमति देता है यदि कोई पूर्व से ही जानता है। इस प्रकार दो सतहों और के क्षेत्रों का उपयोग करके प्राप्त किया जाता हैं
विभेदक क्षेत्रों के कारक देखें
स्माल फ़्लैट सतह की सीमा लेने से विभेदक क्षेत्र मिलते हैं, क्षेत्रों के दो विभेदक क्षेत्रों का दृश्य कारक और दूरी पर s द्वारा दिया गया है
जहाँ और सतह के सामान्य और दो विभेदक क्षेत्रों के मध्य यह किरण के मध्य का कोण होता है।
सामान्य सतह से दूसरी सामान्य सतह तक का दृश्य कारक इस प्रकार दिया गया है
दृश्य कारक एटेंड्यू से संबंधित है।
नुसेल्ट एनालॉग
ज्यामितीय चित्र जो दृश्य कारक के बारे में अंतर्ज्ञान में सहायता कर सकता है, यह विल्हेम नुसेल्ट द्वारा विकसित किया गया था, और इसे नुसेल्ट एनालॉग कहा जाता है। यह विभेदक अवयव dAi और अवयव Aj के मध्य का दृश्य कारक अवयव Aj को इकाई गोलार्ध की सतह पर प्रक्षेपित करके प्राप्त किया जा सकता है, और फिर उसे Ai के प्लेन में रुचि बिंदु के चारों ओर इकाई वृत्त पर प्रक्षेपित किया जा सकता है। दृश्य कारक तब इस प्रक्षेपण द्वारा कवर किए गए इकाई सर्कल के अनुपात के अंतर क्षेत्र dAi गुना के सामान होता है।
गोलार्ध पर प्रक्षेपण, Aj द्वारा अंतरित ठोस कोण देते हुए, कारकों cos(θ2) और 1/r2 का ध्यान रखता है | वृत्त पर प्रक्षेपण और उसके क्षेत्रफल से विभाजन के पश्चात् स्थानीय कारक cos(θ1) और π द्वारा सामान्यीकरण का ध्यान रखा जाता है।
नुसेल्ट एनालॉग का उपयोग कभी-कभी सम्मिश्र सतहों के रूप कारकों को मापने के लिए उपयुक्त फिश-आई लेंस के माध्यम से फोटो खींचकर किया जाता है।[2] इसके लिए (हेमिस्फेरिकल फोटोग्राफी भी देखें)। किन्तु अब इसका मुख्य मान अनिवार्य रूप से अंतर्ज्ञान के निर्माण में निहित है।
यह भी देखें
- रेडियोसिटी (ऊष्मा स्थानांतरण), अनेक निकायों के मध्य विकिरण हस्तांतरण का समाधान करने के लिए आव्युह गणना विधि हैं।
- गेभर्ट फैक्टर, किसी भी संख्या में सतहों के मध्य विकिरण स्थानांतरण समस्याओं का समाधान करने के लिए अभिव्यक्ति होता हैं।
संदर्भ
- ↑ Heat and Mass Transfer, Yunus A. Cengel and Afshin J. Ghajar, 4th Edition
- ↑ Michael F. Cohen, John R. Wallace (1993), Radiosity and realistic image synthesis. Morgan Kaufmann, ISBN 0-12-178270-0, p. 80
बाहरी संबंध
A large number of 'standard' view factors can be calculated with the use of tables that are commonly provided in heat transfer textbooks.
- List of view factors for specific geometry cases
- View3D, a computer program (FOSS) for calculating view factors in 2D and 3D.