अल्फ़ा प्रक्रिया: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 28: Line 28:
\end{array}</math>
\end{array}</math>
प्रत्येक प्रतिक्रिया से उत्पन्न ऊर्जा, {{mvar|E}}, मुख्य रूप से गामा किरणों ({{mvar|&gamma;}}) के रूप में होती है, जिसमें अतिरिक्त गति के रूप में उपोत्पाद तत्व द्वारा थोड़ी मात्रा ली जाती है।
प्रत्येक प्रतिक्रिया से उत्पन्न ऊर्जा, {{mvar|E}}, मुख्य रूप से गामा किरणों ({{mvar|&gamma;}}) के रूप में होती है, जिसमें अतिरिक्त गति के रूप में उपोत्पाद तत्व द्वारा थोड़ी मात्रा ली जाती है।
[[File:Binding energy curve - common isotopes.svg|thumb|371x371px|न्यूक्लाइड के चयन के लिए प्रति न्यूक्लियॉन बाइंडिंग ऊर्जा। सूचीबद्ध नहीं है {{sup|62}}नी, 8.7945 MeV पर उच्चतम बंधन ऊर्जा के साथ।]]
[[File:Binding energy curve - common isotopes.svg|thumb|371x371px|न्यूक्लाइड के चयन के लिए प्रति न्यूक्लियॉन बाइंडिंग ऊर्जा सूचीबद्ध नहीं है {{sup|62}}Ni, 8.7945 MeV पर उच्चतम बंधन ऊर्जा के साथ।]]




Line 34: Line 34:
इन सभी प्रतिक्रियाओं की तारों के तापमान और घनत्व पर बहुत कम दर होती है और इसलिए ये तारे के कुल उत्पादन में महत्वपूर्ण ऊर्जा का योगदान नहीं करते हैं। बढ़ते कूलम्ब अवरोध के कारण, वे नियॉन (परमाणु क्रमांक N > 10) से भारी तत्वों के साथ और भी कम आसानी से घटित होते हैं।
इन सभी प्रतिक्रियाओं की तारों के तापमान और घनत्व पर बहुत कम दर होती है और इसलिए ये तारे के कुल उत्पादन में महत्वपूर्ण ऊर्जा का योगदान नहीं करते हैं। बढ़ते कूलम्ब अवरोध के कारण, वे नियॉन (परमाणु क्रमांक N > 10) से भारी तत्वों के साथ और भी कम आसानी से घटित होते हैं।


== <span class="एंकर" आईडी="अल्फा" तत्व>अल्फा प्रक्रिया तत्व</span>                                                                                                                                                                 ==
== <span class="एंकर" आईडी="अल्फा" तत्व>अल्फा प्रक्रिया तत्व</span>                                                                                                               ==
अल्फा प्रक्रिया तत्व (या अल्फा तत्व) तथाकथित हैं क्योंकि उनके सबसे प्रचुर आइसोटोप चार के पूर्णांक गुणज हैं - हीलियम नाभिक ([[अल्फा कण]]) का द्रव्यमान है जो की इन आइसोटोपों को ''[[अल्फा न्यूक्लाइड]]'' कहा जाता है।
अल्फा प्रक्रिया तत्व (या अल्फा तत्व) तथाकथित हैं क्योंकि उनके सबसे प्रचुर आइसोटोप चार के पूर्णांक गुणज हैं - हीलियम नाभिक ([[अल्फा कण]]) का द्रव्यमान है जो की इन आइसोटोपों को ''[[अल्फा न्यूक्लाइड]]'' कहा जाता है।
[[File:Nuclear energy generation.svg|right|upright=1.5|thumb|250px|ट्रिपल-{{mvar|α}} विभिन्न तापमानों पर विलयन प्रक्रियाएं ({{mvar|T}}). धराशायी रेखा संयुक्त ऊर्जा उत्पादन को दर्शाती है {{math|p-p}} और CNO एक तारे के भीतर प्रक्रियाएँ करते हैं।]]
[[File:Nuclear energy generation.svg|right|upright=1.5|thumb|250px|ट्रिपल-{{mvar|α}} विभिन्न तापमानों पर विलयन प्रक्रियाएं ({{mvar|T}}). धराशायी रेखा संयुक्त ऊर्जा उत्पादन को दर्शाती है {{math|p-p}} और CNO एक तारे के भीतर प्रक्रियाएँ करते हैं।]]
Line 52: Line 52:


फोटोडिसइंटीग्रेशन और पुनर्व्यवस्था से जुड़े इस टर्मिनल हीटिंग के समय, परमाणु कणों को सुपरनोवा के समय उनके सबसे स्थिर रूपों में परिवर्तित किया जाता है और इसके बाद में, आंशिक रूप से, अल्फा प्रक्रियाओं के माध्यम से इजेक्शन किया जाता है। <math>{}_{22}^{44}\textrm{Ti}</math> और उससे ऊपर से प्रारंभ होकर, सभी उत्पाद तत्व रेडियोधर्मी हैं और इसलिए अधिक स्थिर आइसोटोप में क्षय हो जाएंगे - उदाहरण के लिए। <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> बनता है और <math>{}_{26}^{56}\textrm{Fe}</math> में क्षय हो जाता है।<ref name=":3" />
फोटोडिसइंटीग्रेशन और पुनर्व्यवस्था से जुड़े इस टर्मिनल हीटिंग के समय, परमाणु कणों को सुपरनोवा के समय उनके सबसे स्थिर रूपों में परिवर्तित किया जाता है और इसके बाद में, आंशिक रूप से, अल्फा प्रक्रियाओं के माध्यम से इजेक्शन किया जाता है। <math>{}_{22}^{44}\textrm{Ti}</math> और उससे ऊपर से प्रारंभ होकर, सभी उत्पाद तत्व रेडियोधर्मी हैं और इसलिए अधिक स्थिर आइसोटोप में क्षय हो जाएंगे - उदाहरण के लिए। <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> बनता है और <math>{}_{26}^{56}\textrm{Fe}</math> में क्षय हो जाता है।<ref name=":3" />
==सापेक्ष बहुतायत के लिए विशेष संकेतन==
==सापेक्ष बहुतायत के लिए विशेष संकेतन                                                                                                     ==
तारों में कुल अल्फा तत्वों की प्रचुरता समान्यत: लघुगणक के रूप में व्यक्त की जाती है, खगोलविद समान्यत: वर्गाकार ब्रैकेट नोटेशन का उपयोग करते हैं:
तारों में कुल अल्फा तत्वों की प्रचुरता समान्यत: लघुगणक के रूप में व्यक्त की जाती है, खगोलविद समान्यत: वर्गाकार ब्रैकेट नोटेशन का उपयोग करते हैं:
:<math chem> \left[ \frac{ \alpha }{\, \ce{Fe} \,} \right] ~\equiv~ \log_{10}{\left(\, \frac{ N_{\mathrm{E}\alpha} }{\, N_\ce{Fe} \,} \,\right)_\mathsf{Star}} - \log_{10}{\left(\frac{ N_{\mathrm{E}\alpha} }{\, N_\ce{Fe} \,}\,\right)_\mathsf{Sun} } ~,</math>  
:<math chem> \left[ \frac{ \alpha }{\, \ce{Fe} \,} \right] ~\equiv~ \log_{10}{\left(\, \frac{ N_{\mathrm{E}\alpha} }{\, N_\ce{Fe} \,} \,\right)_\mathsf{Star}} - \log_{10}{\left(\frac{ N_{\mathrm{E}\alpha} }{\, N_\ce{Fe} \,}\,\right)_\mathsf{Sun} } ~,</math>  
:जहां <math>\, N_{\mathrm{E}\alpha} \,</math> प्रति इकाई आयतन में अल्फा तत्वों की संख्या है, और <math chem="">\, N_\ce{Fe} \,</math> प्रति इकाई आयतन में लौह नाभिकों की संख्या है। यह संख्या <math>\, N_{\mathrm{E}\alpha} \,</math> की गणना के उद्देश्य से है कि किन तत्वों को "अल्फा तत्व" माना जाना चाहिए, यह विवादास्पद हो जाता है। सैद्धांतिक गैलेक्टिक विकास मॉडल पूर्वानुमान करते हैं कि ब्रह्मांड के आरंभ में लोहे के सापेक्ष अधिक अल्फा तत्व थे।
:जहां <math>\, N_{\mathrm{E}\alpha} \,</math> प्रति इकाई आयतन में अल्फा तत्वों की संख्या है, और <math chem="">\, N_\ce{Fe} \,</math> प्रति इकाई आयतन में लौह नाभिकों की संख्या है। यह संख्या <math>\, N_{\mathrm{E}\alpha} \,</math> की गणना के उद्देश्य से है कि किन तत्वों को "अल्फा तत्व" माना जाना चाहिए, यह विवादास्पद हो जाता है। सैद्धांतिक गैलेक्टिक विकास मॉडल पूर्वानुमान करते हैं कि ब्रह्मांड के आरंभ में आयरन के सापेक्ष अधिक अल्फा तत्व थे।


==संदर्भ                                                                                                                                                                              ==
==संदर्भ                                                                                                                                                                              ==

Revision as of 11:45, 6 August 2023

अल्फा प्रक्रिया द्वारा कार्बन से परे तत्वों का निर्माण

अल्फा प्रक्रिया, जिसे अल्फा सीढ़ी के रूप में भी जाना जाता है, परमाणु विलयन प्रतिक्रियाओं के दो वर्गों में से एक है जिसके द्वारा तारे हीलियम को भारी रासायनिक तत्व में परिवर्तित करते हैं। दूसरा वर्ग प्रतिक्रियाओं का एक चक्र है जिसे ट्रिपल-अल्फा प्रक्रिया कहा जाता है, जो केवल हीलियम का उपभोग करता है, और कार्बन का उत्पादन करता है।[1] अल्फा प्रक्रिया समान्यत: बड़े सितारों में और सुपरनोवा के समय होती है।

दोनों प्रक्रियाएं हाइड्रोजन विलयन से पहले होती हैं, जो हीलियम का उत्पादन करती है जो ट्रिपल-अल्फा प्रक्रिया और अल्फा सीढ़ी प्रक्रियाओं दोनों को ईंधन देती है। ट्रिपल अल्फा प्रक्रिया के बाद पर्याप्त कार्बन का उत्पादन होता है, अल्फा-सीढ़ी प्रारंभ होती है और नीचे सूचीबद्ध क्रम में तेजी से भारी तत्वों की विलयन प्रतिक्रियाएं होती हैं। प्रत्येक चरण में केवल पिछली प्रतिक्रिया और हीलियम के उत्पाद का उपयोग होती है। बाद के चरण की प्रतिक्रियाएँ जो किसी विशेष तारे में प्रारंभ होने में सक्षम होती हैं, ऐसा तब होता है जब तारे की बाहरी परतों में पिछले चरण की प्रतिक्रियाएँ अभी भी चल रही होती हैं।