बाष्पीकरणीय शीतलन (परमाणु भौतिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:


अतः यह प्रक्रिया कप कॉफी को ठंडा करने के लिए उस पर फूंक मारने के समान है: कॉफी के लिए ऊर्जा वितरण के उच्चतम किनारे पर उपस्तिथ अणु सतह के ऊपर वाष्प बनाते हैं और फिर उन्हें '''उड़ाकर''' प्रणाली से निकाल दिया जाता है, जिससे औसत ऊर्जा कम हो जाती है। और इसलिए शेष कॉफी अणुओं के तापमान को दर्शाती है।
अतः यह प्रक्रिया कप कॉफी को ठंडा करने के लिए उस पर फूंक मारने के समान है: कॉफी के लिए ऊर्जा वितरण के उच्चतम किनारे पर उपस्तिथ अणु सतह के ऊपर वाष्प बनाते हैं और फिर उन्हें '''उड़ाकर''' प्रणाली से निकाल दिया जाता है, जिससे औसत ऊर्जा कम हो जाती है। और इसलिए शेष कॉफी अणुओं के तापमान को दर्शाती है।
[[File:Boltzmann distribution evaporation.gif|thumb|right|333x333px|~300 K पर 1 मिलियन 87Rb परमाणुओं की प्रारंभिक जनसंख्या के लिए मैक्सवेल-बोल्ट्ज़मैन वेग वितरण का विकास। gif के प्रत्येक चरण पर वितरण में अधिक तीव्र 5% परमाणु हटा दिए जाते हैं, धीरे-धीरे शेष का औसत वेग कम हो जाता है परमाणु.]]
[[File:Boltzmann distribution evaporation.gif|thumb|right|333x333px|~300 K पर 1 मिलियन 87आरबी परमाणुओं की प्रारंभिक जनसंख्या के लिए मैक्सवेल-बोल्ट्ज़मैन वेग वितरण का विकास। जीआईएफ के प्रत्येक चरण पर वितरण में अधिक तीव्र 5% परमाणु हटा दिए जाते हैं, धीरे-धीरे शेष परमाणुओं का औसत वेग कम हो जाता है।]]


== रेडियोफ्रीक्वेंसी प्रेरित वाष्पीकरण ==
== रेडियोफ्रीक्वेंसी प्रेरित वाष्पीकरण ==


इस प्रकार से [[ मैग्नेटो-ऑप्टिकल जाल | मैग्नेटो-ऑप्टिकल ट्रैप]] (एमओटी) में परमाणुओं को वाष्पीकृत रूप से ठंडा करने के लिए रेडियोफ्रीक्वेंसी (आरएफ) प्रेरित बाष्पीकरणीय शीतलन अधिक समान विधि है। जहाँ  |F=0⟩ → |F=1⟩ संक्रमण पर फंसे हुए परमाणु लेजर को ठंडा करने पर विचार करते है। और |F=1⟩ अवस्था (|mF= -1,0,1⟩) के चुंबकीय उपस्तर शून्य बाहरी क्षेत्र के लिए व्यर्थ होते हैं। सीमित चुंबकीय चतुर्भुज क्षेत्र, जो ट्रैप के केंद्र में शून्य है और सभी स्थान गैर-शून्य है, परमाणुओं में एक क्षेत्र परिवर्तन का कारण बनता है जो की ट्रैप केंद्र से भटक जाता है, जिससे तीन चुंबकीय उपस्तरों की विकृति बढ़ जाती है। इसलिए फंसे हुए परमाणु के कुल स्पिन कोणीय गति और बाहरी चुंबकीय क्षेत्र के मध्य परस्पर क्रिया ऊर्जा z-अक्ष पर स्पिन कोणीय गति के प्रक्षेपण पर निर्भर करती है, और आनुपातिक है<math display="block">\Delta E\propto-m_{F}B_{Z}</math>इस संबंध से यह देखा जा सकता है कि केवल |m<sub>F</sub>=-1⟩ चुंबकीय उपस्तर में क्षेत्र के साथ सकारात्मक अंतःक्रिया ऊर्जा होती है, अर्थात, इस अवस्था में परमाणुओं की ऊर्जा ट्रैप केंद्र से स्थानांतरित होने पर बढ़ जाती है, जिससे ट्रैप केंद्र न्यूनतम ऊर्जा का एक बिंदु है, ट्रैप की परिभाषा इसके विपरीत, |m<sub>F</sub>=0⟩ अवस्था की ऊर्जा क्षेत्र द्वारा अपरिवर्तित होती है (कोई ट्रैपिंग नहीं), और |m<sub>F</sub>=1⟩ अवस्था वास्तव में ऊर्जा में घट जाती है क्योंकि यह ट्रैप केंद्र से भटक जाता है, जिससे केंद्र अधिकतम ऊर्जा का बिंदु बन जाता है। इस कारण से |m<sub>F</sub>=-1⟩ को ट्रैपिंग अवस्था और |m<sub>F</sub>=0,1⟩ को गैर-ट्रैपिंग अवस्था कहा जाता है।
इस प्रकार से [[ मैग्नेटो-ऑप्टिकल जाल | मैग्नेटो-ऑप्टिकल ट्रैप]] (एमओटी) में परमाणुओं को वाष्पीकृत रूप से ठंडा करने के लिए रेडियोफ्रीक्वेंसी (आरएफ) प्रेरित बाष्पीकरणीय शीतलन अधिक समान विधि है। जहाँ  |F=0⟩ → |F=1⟩ संक्रमण पर फंसे हुए परमाणु लेजर को ठंडा करने पर विचार करते है। और |F=1⟩ अवस्था (|mF= -1,0,1⟩) के चुंबकीय उपस्तर शून्य बाहरी क्षेत्र के लिए व्यर्थ होते हैं। सीमित चुंबकीय चतुर्भुज क्षेत्र, जो ट्रैप के केंद्र में शून्य है और सभी स्थान गैर-शून्य है, परमाणुओं में एक क्षेत्र परिवर्तन का कारण बनता है जो की ट्रैप केंद्र से भटक जाता है, जिससे तीन चुंबकीय उपस्तरों की विकृति बढ़ जाती है। इसलिए फंसे हुए परमाणु के कुल स्पिन कोणीय गति और बाहरी चुंबकीय क्षेत्र के मध्य परस्पर क्रिया ऊर्जा z-अक्ष पर स्पिन कोणीय गति के प्रक्षेपण पर निर्भर करती है, और आनुपातिक है<math display="block">\Delta E\propto-m_{F}B_{Z}</math>इस संबंध से यह देखा जा सकता है कि केवल |m<sub>F</sub>=-1⟩ चुंबकीय उपस्तर में क्षेत्र के साथ सकारात्मक अंतःक्रिया ऊर्जा होती है, अर्थात, इस अवस्था में परमाणुओं की ऊर्जा ट्रैप केंद्र से स्थानांतरित होने पर बढ़ जाती है, जिससे ट्रैप केंद्र न्यूनतम ऊर्जा का एक बिंदु है, ट्रैप की परिभाषा इसके विपरीत, |m<sub>F</sub>=0⟩ अवस्था की ऊर्जा क्षेत्र द्वारा अपरिवर्तित होती है (कोई ट्रैपिंग नहीं), और |m<sub>F</sub>=1⟩ अवस्था वास्तव में ऊर्जा में घट जाती है क्योंकि यह ट्रैप केंद्र से भटक जाता है, जिससे केंद्र अधिकतम ऊर्जा का बिंदु बन जाता है। इस कारण से |m<sub>F</sub>=-1⟩ को ट्रैपिंग अवस्था और |m<sub>F</sub>=0,1⟩ को गैर-ट्रैपिंग अवस्था कहा जाता है।
इस प्रकार से चुंबकीय क्षेत्र अंतःक्रिया ऊर्जा के समीकरण से, यह भी देखा जा सकता है कि |mF=1,-1⟩ अवस्थाएँ विपरीत दिशाओं में स्थानांतरित होती हैं, जिससे इन दोनों अवस्थाओं के मध्य कुल ऊर्जा अंतर परिवर्तन जाता है। |m<sub>F</sub>=-1⟩→|m<sub>F</sub>F=1⟩इसलिए संक्रमण आवृत्ति जेमान  परिवर्तनाव का अनुभव करती है। इसे ध्यान में रखते हुए, आरएफ बाष्पीकरणीय शीतलन योजना निम्नानुसार काम करती है: -1{{Right arrow}}+1 के ज़ीमैन शिफ्ट का आकार संक्रमण चुंबकीय क्षेत्र की पॉवर पर निर्भर करता है, जो ट्रैप  केंद्र से रेडियल रूप से बाहर की ओर बढ़ता है। और वे परमाणु जो अधिक ठंडे होते हैं, अर्थात ट्रैप सेंटर के चारों ओर छोटे से क्षेत्र में चले जाते हैं, जहां वे -1{{Right arrow}}+1 में केवल छोटे से ज़िमन शिफ्ट का अनुभव करते हैं। संक्रमण आवृत्ति. चूंकि, गर्म परमाणु केंद्र से अधिक दूर ट्रैप  के क्षेत्रों में समय बिताते हैं, जहाँ चुंबकीय क्षेत्र अधिक सशक्त  होता है और जेमान शिफ्ट इसलिए उच्च होता है। अतः विशिष्ट एमओटी में प्रयुक्त माप  पर चुंबकीय क्षेत्र द्वारा प्रेरित परिवर्तनाव मेगाहर्ट्ज के क्रम पर होता है, जिससे  -1{{Right arrow}}+1 को चलाने के लिए रेडियोफ्रीक्वेंसी स्रोत का उपयोग किया जा सकता है। चूंकि संक्रमण आरएफ स्रोत के लिए आवृत्ति का चुनाव ट्रैपिंग संभावित वक्र पर बिंदु से मेल खाता है, जिस पर परमाणुओं को आरएफ स्रोत की आवृत्ति के समान  ज़ीमैन शिफ्ट का अनुभव होता है, जो तब परमाणुओं को एंटी-ट्रैपिंग |m{{Sub|F}}=1{{Rangle}} की ओर ले जाता है। जिससे चुंबकीय उपस्तर और शीघ्र ट्रैप  से बाहर निकल जाता है। इसलिए आरएफ आवृत्ति को कम करना चित्र में धराशायी रेखा को कम करने के समान  है, जो प्रभावी रूप से संभावित कुएं की गहराई को कम करता है। इस कारण से इन ऊर्जावान परमाणुओं को हटाने के लिए उपयोग किए जाने वाले आरएफ स्रोत को प्रायः "आरएफ नाइफ" के रूप में जाना जाता है, क्योंकि यह ट्रैप से अधिक ऊर्जावान परमाणुओं को हटाने के लिए ट्रैप  की क्षमता की ऊंचाई को प्रभावी रूप से कम कर देता है, और ट्रैप  की उच्च ऊर्जा टेल  को "काट" देता है। अतः ऊर्जा वितरण इस विधि का उपयोग रुबिडियम परमाणुओं के परिवर्तन को संक्षेपण महत्वपूर्ण तापमान से नीचे ठंडा करने के लिए किया गया था जिससे  प्रथम प्रयोगात्मक रूप से देखा गया बोस-आइंस्टीन कंडेनसेट (बोस-आइंस्टीन कंडेनसेट) बनाया जा सकता है।<ref>{{cite journal|last1=Anderson|first1=M.H.|last2=Ensher|first2=J.R.|last3=Matthews|first3=M.R.|last4=Wieman|first4=C.E.|last5=Cornell|first5=E.A.|title=तनु परमाणु वाष्प में बोस-आइंस्टीन संघनन का अवलोकन|journal=Science|date=14 July 1995|volume=269|issue=5221|pages=198–201|doi=10.1126/science.269.5221.198 |pmid=17789847|bibcode=1995Sci...269..198A|doi-access=free}}</ref>
इस प्रकार से चुंबकीय क्षेत्र अंतःक्रिया ऊर्जा के समीकरण से, यह भी देखा जा सकता है कि |mF=1,-1⟩ अवस्थाएँ विपरीत दिशाओं में स्थानांतरित होती हैं, जिससे इन दोनों अवस्थाओं के मध्य कुल ऊर्जा अंतर परिवर्तन जाता है। |m<sub>F</sub>=-1⟩→|m<sub>F</sub>F=1⟩इसलिए संक्रमण आवृत्ति जेमान  परिवर्तनाव का अनुभव करती है। इसे ध्यान में रखते हुए, आरएफ बाष्पीकरणीय शीतलन योजना निम्नानुसार काम करती है: -1{{Right arrow}}+1 के ज़ीमैन शिफ्ट का आकार संक्रमण चुंबकीय क्षेत्र की पॉवर पर निर्भर करता है, जो ट्रैप  केंद्र से रेडियल रूप से बाहर की ओर बढ़ता है। और वे परमाणु जो अधिक ठंडे होते हैं, अर्थात ट्रैप सेंटर के चारों ओर छोटे से क्षेत्र में चले जाते हैं, जहां वे -1{{Right arrow}}+1 में केवल छोटे से ज़ीमैन शिफ्ट का अनुभव करते हैं। और संक्रमण आवृत्ति चूंकि, गर्म परमाणु केंद्र से अधिक दूर ट्रैप  के क्षेत्रों में समय बिताते हैं, जहाँ चुंबकीय क्षेत्र अधिक सशक्त  होता है और ज़ीमैन शिफ्ट इसलिए उच्च होता है। अतः विशिष्ट एमओटी में प्रयुक्त माप  पर चुंबकीय क्षेत्र द्वारा प्रेरित परिवर्तनाव मेगाहर्ट्ज के क्रम पर होता है, जिससे  -1{{Right arrow}}+1 को चलाने के लिए रेडियोफ्रीक्वेंसी स्रोत का उपयोग किया जा सकता है। चूंकि संक्रमण आरएफ स्रोत के लिए आवृत्ति का चुनाव ट्रैपिंग संभावित वक्र पर बिंदु से मेल खाता है, जिस पर परमाणुओं को आरएफ स्रोत की आवृत्ति के समान  ज़ीमैन शिफ्ट का अनुभव होता है, जो तब परमाणुओं को एंटी-ट्रैपिंग |m{{Sub|F}}=1{{Rangle}} की ओर ले जाता है। जिससे चुंबकीय उपस्तर और शीघ्र ट्रैप  से बाहर निकल जाता है। इसलिए आरएफ आवृत्ति को कम करना चित्र में धराशायी रेखा को कम करने के समान  है, जो प्रभावी रूप से संभावित कुएं की गहराई को कम करता है। इस कारण से इन ऊर्जावान परमाणुओं को हटाने के लिए उपयोग किए जाने वाले आरएफ स्रोत को प्रायः "आरएफ नाइफ" के रूप में जाना जाता है, क्योंकि यह ट्रैप से अधिक ऊर्जावान परमाणुओं को हटाने के लिए ट्रैप  की क्षमता की ऊंचाई को प्रभावी रूप से कम कर देता है, और ट्रैप  की उच्च ऊर्जा टेल  को "काट" देता है। अतः ऊर्जा वितरण इस विधि का उपयोग रुबिडियम परमाणुओं के परिवर्तन को संक्षेपण महत्वपूर्ण तापमान से नीचे ठंडा करने के लिए किया गया था जिससे  प्रथम प्रयोगात्मक रूप से देखा गया बोस-आइंस्टीन कंडेनसेट (बोस-आइंस्टीन कंडेनसेट) बनाया जा सकता है।<ref>{{cite journal|last1=Anderson|first1=M.H.|last2=Ensher|first2=J.R.|last3=Matthews|first3=M.R.|last4=Wieman|first4=C.E.|last5=Cornell|first5=E.A.|title=तनु परमाणु वाष्प में बोस-आइंस्टीन संघनन का अवलोकन|journal=Science|date=14 July 1995|volume=269|issue=5221|pages=198–201|doi=10.1126/science.269.5221.198 |pmid=17789847|bibcode=1995Sci...269..198A|doi-access=free}}</ref>


== ऑप्टिकल वाष्पीकरण ==
== ऑप्टिकल वाष्पीकरण ==


'''जबकि बोस-आइंस्टीन संघनन का''' प्रथम अवलोकन आरएफ संचालित बाष्पीकरणीय शीतलन का उपयोग करके चुंबकीय परमाणु ट्रैप  में किया गया था, ऑप्टिकल द्विध्रुवीय ट्रैप  अब संघनन प्राप्त करने के लिए बहुत अधिक सामान्य मंच हैं। एमओटी से प्रारंभ होकर, ठंडे, फंसे हुए परमाणुओं को उच्च शक्ति, कसकर केंद्रित, ऑफ-रेजोनेंट लेजर बीम के केंद्र बिंदु पर स्थानांतरित किया जाता है। अपने फोकस पर लेजर का विद्युत क्षेत्र परमाणुओं में द्विध्रुवीय क्षणों को प्रेरित करने के लिए पर्याप्त रूप से सशक्त होता है, जो फिर लेजर फोकस पर अधिकतम विद्युत क्षेत्र की ओर आकर्षित होते हैं, जिससे प्रभावी रूप से उन्हें बीम फोकस पर पकड़ने के लिए फँसाने की क्षमता उत्पन्न होती है।
जबकि बोस-आइंस्टीन संघनन का प्रथम अवलोकन आरएफ संचालित बाष्पीकरणीय शीतलन का उपयोग करके चुंबकीय परमाणु ट्रैप  में किया गया था, जिससे ऑप्टिकल द्विध्रुवीय ट्रैप  अब संघनन प्राप्त करने के लिए बहुत अधिक सामान्य प्लेटफार्म हैं। और एमओटी से प्रारंभ होकर, ठंडे, फंसे हुए परमाणुओं को उच्च शक्ति, संगठित केंद्रित, ऑफ-रेजोनेंट लेजर किरण के केंद्र बिंदु पर स्थानांतरित किया जाता है। और अपने केंद्र पर लेजर का विद्युत क्षेत्र परमाणुओं में द्विध्रुवीय क्षणों को प्रेरित करने के लिए पर्याप्त रूप से सशक्त होता है, जो पुनः लेजर केंद्र पर अधिकतम विद्युत क्षेत्र की ओर आकर्षित होते हैं, जिससे प्रभावी रूप से उन्हें किरण केंद्र पर पकड़ने के लिए ट्रेपिंग की क्षमता उत्पन्न होती है।


ऑप्टिकल डिपोल ट्रैप (ओडीटी) में ऑप्टिकल ट्रैपिंग क्षमता की गहराई ट्रैपिंग लेजर प्रकाश की तीव्रता के समानुपाती होती है। इसलिए ट्रैपिंग लेजर बीम में शक्ति कम होने से ट्रैपिंग क्षमता की गहराई कम हो जाती है। आरएफ-संचालित वाष्पीकरण के स्तिथि में, परमाणुओं को सीमित करने वाले संभावित अवरोध की वास्तविक ऊंचाई वाष्पीकरण अनुक्रम के दौरान तय की जाती है, लेकिन आरएफ चाकू प्रभावी रूप से इस अवरोध की गहराई को कम कर देता है, जैसा कि पहले चर्चा की गई थी। चूंकि, ऑप्टिकल ट्रैप के लिए, लेजर शक्ति को कम करके वाष्पीकरण की सुविधा प्रदान की जाती है और इस प्रकार ट्रैपिंग क्षमता की गहराई कम हो जाती है। नतीजतन, ट्रैप  में सबसे गर्म परमाणुओं में पर्याप्त गतिज ऊर्जा होगी जो इसे बाधा दीवारों पर बनाने और ट्रैप  से बाहर निकलने में सक्षम होगी, जिससे शेष परमाणुओं की औसत ऊर्जा कम हो जाएगी जैसा कि पहले वर्णित है। जबकि ओडीटी के लिए ट्रैप की गहराई उथली हो सकती है (तापमान के संदर्भ में एमके के क्रम पर), इस ऑप्टिकल वाष्पीकरण प्रक्रिया की सादगी ने चुंबकीय बीईसी उत्पादन के तुरंत बाद इसके पहले प्रदर्शन के बाद से इसे बीईसी प्रयोगों के लिए तेजी से लोकप्रिय बनाने में मदद की है।<ref>{{cite journal|last1=Barrett|first1=M.D.|last2=Sauer|first2=J.A.|last3=Chapman|first3=M.S.|title=परमाणु बोस-आइंस्टीन कंडेनसेट का ऑल-ऑप्टिकल गठन|journal=Physical Review Letters|date=19 June 2001|volume=87|issue=1|pages=010404|doi=10.1103/PhysRevLett.87.010404 |pmid=11461452|arxiv=cond-mat/0106027|bibcode=2001PhRvL..87a0404B|s2cid=24415566}}</ref>
इस प्रकार से ऑप्टिकल डिपोल ट्रैप (ओडीटी) में ऑप्टिकल ट्रैपिंग क्षमता की गहराई ट्रैपिंग लेजर प्रकाश की तीव्रता के समानुपाती होती है। इसलिए ट्रैपिंग लेजर किरण में शक्ति कम होने से ट्रैपिंग क्षमता की गहराई कम हो जाती है। जिससे आरएफ-संचालित वाष्पीकरण के स्तिथि में, परमाणुओं को सीमित करने वाले संभावित अवरोध की वास्तविक ऊंचाई वाष्पीकरण अनुक्रम के समय तय की जाती है, किन्तु आरएफ चाकू प्रभावी रूप से इस अवरोध की गहराई को कम कर देता है, जैसा कि इस पर पहले विचार किया गया था। चूंकि, ऑप्टिकल ट्रैप के लिए, लेजर शक्ति को कम करके वाष्पीकरण की सुविधा प्रदान की जाती है और इस प्रकार ट्रैपिंग क्षमता की गहराई कम हो जाती है। परिणामस्वरूप, ट्रैप  में सबसे गर्म परमाणुओं में पर्याप्त गतिज ऊर्जा होगी जो इसे बाधा दीवारों पर बनाने और ट्रैप  से बाहर निकलने में सक्षम होती है, जिससे शेष परमाणुओं की औसत ऊर्जा कम हो जाएगी जैसा कि पहले वर्णित किया गया है। जबकि ओडीटी के लिए ट्रैप की गहराई नगण्य हो सकती है (तापमान के संदर्भ में एमके के क्रम पर), इस ऑप्टिकल वाष्पीकरण प्रक्रिया की सरलता ने चुंबकीय बीईसी उत्पादन के शीघ्रता के पश्चात इसके पहले प्रदर्शन के बाद से इसे बीईसी प्रयोगों के लिए तीव्रता से लोकप्रिय बनाने में सहायता की है।<ref>{{cite journal|last1=Barrett|first1=M.D.|last2=Sauer|first2=J.A.|last3=Chapman|first3=M.S.|title=परमाणु बोस-आइंस्टीन कंडेनसेट का ऑल-ऑप्टिकल गठन|journal=Physical Review Letters|date=19 June 2001|volume=87|issue=1|pages=010404|doi=10.1103/PhysRevLett.87.010404 |pmid=11461452|arxiv=cond-mat/0106027|bibcode=2001PhRvL..87a0404B|s2cid=24415566}}</ref>
==यह भी देखें==
==यह भी देखें==
* मैग्नेटो-ऑप्टिकल ट्रैप  
* मैग्नेटो-ऑप्टिकल ट्रैप  
* बोस-आइंस्टीन संघनन|बोस-आइंस्टीन संघनन
* बोस-आइंस्टीन संघनन
* [[ऑप्टिकल चिमटी]]
* [[ऑप्टिकल चिमटी|ऑप्टिकल ट्वीज़र्स]]
*[[रमन ठंडा हो रहा है]]
*[[लेजर शीतलन|लेजर कूलिंग]]  
*सिसिफ़स ठंडा होना
*सिसिफ़स कूलिंग
*[[लेजर शीतलन]]
*[[रमन ठंडा हो रहा है|रमन कूलिंग]]


== संदर्भ ==
== संदर्भ ==

Revision as of 08:24, 10 August 2023

बाष्पीकरणीय शीतलन उच्च चरण स्थान घनत्व को प्राप्त करने के लिए परमाणु भौतिकी तकनीक है, जहां अकेले ऑप्टिकल शीतलन तकनीक सामान्यतः नहीं पहुंच सकती है।[1]

इस प्रकार से ऑप्टिकल या चुंबकीय ट्रैप में फंसे परमाणुओं को दो प्राथमिक तंत्रों के माध्यम से वाष्पीकरण द्वारा ठंडा किया जा सकता है, जो की सामान्यतः प्रश्न में ट्रैप के प्रकार के लिए विशिष्ट होते हैं: चुंबकीय ट्रैप में, आकाशवाणी आवृति (आरएफ) फ़ील्ड्स का उपयोग ट्रैप से गर्म परमाणुओं को चुनिंदा रूप से निकालने के लिए किया जाता है। अतः ट्रैपिंग और नॉन-ट्रैपिंग स्पिन अवस्थाओं के मध्य संक्रमण उत्पन्न करके; या, ऑप्टिकल ट्रैप में, ट्रैप की गहराई धीरे-धीरे कम हो जाती है, जिससे ट्रैप में अधिक ऊर्जावान परमाणु ऑप्टिकल बैरियर के किनारों से बाहर निकल जाते हैं। इस प्रकार से ट्रैप में परमाणुओं के वेग के लिए मैक्सवेल-बोल्ट्ज़मैन वितरण की स्तिथि में, ये परमाणु जो की ट्रैप से बच जाते पलायन/हैं निकल जाते हैं, वितरण की उच्चतम वेग चोटी में स्थित होते हैं, जिसका अर्थ है कि उनकी गतिज ऊर्जा (और इसलिए तापमान) ट्रैप के औसत से बहुत अधिक है। किन्तु शुद्ध परिणाम यह है कि जहां कुल ट्रैप जनसंख्या घटती है, और वहीं शेष जनसंख्या की औसत ऊर्जा भी घटती है। चूंकि परमाणु परिवर्तन की औसत गतिज ऊर्जा में यह कमी ट्रैप तापमान में उत्तरोत्तर कमी में परिवर्तन किया जाता है, जिससे ट्रैप ठंडा हो जाता है।

अतः यह प्रक्रिया कप कॉफी को ठंडा करने के लिए उस पर फूंक मारने के समान है: कॉफी के लिए ऊर्जा वितरण के उच्चतम किनारे पर उपस्तिथ अणु सतह के ऊपर वाष्प बनाते हैं और फिर उन्हें उड़ाकर प्रणाली से निकाल दिया जाता है, जिससे औसत ऊर्जा कम हो जाती है। और इसलिए शेष कॉफी अणुओं के तापमान को दर्शाती है।

~300 K पर 1 मिलियन 87आरबी परमाणुओं की प्रारंभिक जनसंख्या के लिए मैक्सवेल-बोल्ट्ज़मैन वेग वितरण का विकास। जीआईएफ के प्रत्येक चरण पर वितरण में अधिक तीव्र 5% परमाणु हटा दिए जाते हैं, धीरे-धीरे शेष परमाणुओं का औसत वेग कम हो जाता है।

रेडियोफ्रीक्वेंसी प्रेरित वाष्पीकरण

इस प्रकार से मैग्नेटो-ऑप्टिकल ट्रैप (एमओटी) में परमाणुओं को वाष्पीकृत रूप से ठंडा करने के लिए रेडियोफ्रीक्वेंसी (आरएफ) प्रेरित बाष्पीकरणीय शीतलन अधिक समान विधि है। जहाँ |F=0⟩ → |F=1⟩ संक्रमण पर फंसे हुए परमाणु लेजर को ठंडा करने पर विचार करते है। और |F=1⟩ अवस्था (|mF= -1,0,1⟩) के चुंबकीय उपस्तर शून्य बाहरी क्षेत्र के लिए व्यर्थ होते हैं। सीमित चुंबकीय चतुर्भुज क्षेत्र, जो ट्रैप के केंद्र में शून्य है और सभी स्थान गैर-शून्य है, परमाणुओं में एक क्षेत्र परिवर्तन का कारण बनता है जो की ट्रैप केंद्र से भटक जाता है, जिससे तीन चुंबकीय उपस्तरों की विकृति बढ़ जाती है। इसलिए फंसे हुए परमाणु के कुल स्पिन कोणीय गति और बाहरी चुंबकीय क्षेत्र के मध्य परस्पर क्रिया ऊर्जा z-अक्ष पर स्पिन कोणीय गति के प्रक्षेपण पर निर्भर करती है, और आनुपातिक है

इस संबंध से यह देखा जा सकता है कि केवल |mF=-1⟩ चुंबकीय उपस्तर में क्षेत्र के साथ सकारात्मक अंतःक्रिया ऊर्जा होती है, अर्थात, इस अवस्था में परमाणुओं की ऊर्जा ट्रैप केंद्र से स्थानांतरित होने पर बढ़ जाती है, जिससे ट्रैप केंद्र न्यूनतम ऊर्जा का एक बिंदु है, ट्रैप की परिभाषा इसके विपरीत, |mF=0⟩ अवस्था की ऊर्जा क्षेत्र द्वारा अपरिवर्तित होती है (कोई ट्रैपिंग नहीं), और |mF=1⟩ अवस्था वास्तव में ऊर्जा में घट जाती है क्योंकि यह ट्रैप केंद्र से भटक जाता है, जिससे केंद्र अधिकतम ऊर्जा का बिंदु बन जाता है। इस कारण से |mF=-1⟩ को ट्रैपिंग अवस्था और |mF=0,1⟩ को गैर-ट्रैपिंग अवस्था कहा जाता है। इस प्रकार से चुंबकीय क्षेत्र अंतःक्रिया ऊर्जा के समीकरण से, यह भी देखा जा सकता है कि |mF=1,-1⟩ अवस्थाएँ विपरीत दिशाओं में स्थानांतरित होती हैं, जिससे इन दोनों अवस्थाओं के मध्य कुल ऊर्जा अंतर परिवर्तन जाता है। |mF=-1⟩→|mFF=1⟩इसलिए संक्रमण आवृत्ति जेमान परिवर्तनाव का अनुभव करती है। इसे ध्यान में रखते हुए, आरएफ बाष्पीकरणीय शीतलन योजना निम्नानुसार काम करती है: -1→+1 के ज़ीमैन शिफ्ट का आकार संक्रमण चुंबकीय क्षेत्र की पॉवर पर निर्भर करता है, जो ट्रैप केंद्र से रेडियल रूप से बाहर की ओर बढ़ता है। और वे परमाणु जो अधिक ठंडे होते हैं, अर्थात ट्रैप सेंटर के चारों ओर छोटे से क्षेत्र में चले जाते हैं, जहां वे -1→+1 में केवल छोटे से ज़ीमैन शिफ्ट का अनुभव करते हैं। और संक्रमण आवृत्ति चूंकि, गर्म परमाणु केंद्र से अधिक दूर ट्रैप के क्षेत्रों में समय बिताते हैं, जहाँ चुंबकीय क्षेत्र अधिक सशक्त होता है और ज़ीमैन शिफ्ट इसलिए उच्च होता है। अतः विशिष्ट एमओटी में प्रयुक्त माप पर चुंबकीय क्षेत्र द्वारा प्रेरित परिवर्तनाव मेगाहर्ट्ज के क्रम पर होता है, जिससे -1→+1 को चलाने के लिए रेडियोफ्रीक्वेंसी स्रोत का उपयोग किया जा सकता है। चूंकि संक्रमण आरएफ स्रोत के लिए आवृत्ति का चुनाव ट्रैपिंग संभावित वक्र पर बिंदु से मेल खाता है, जिस पर परमाणुओं को आरएफ स्रोत की आवृत्ति के समान ज़ीमैन शिफ्ट का अनुभव होता है, जो तब परमाणुओं को एंटी-ट्रैपिंग |mF=1⟩ की ओर ले जाता है। जिससे चुंबकीय उपस्तर और शीघ्र ट्रैप से बाहर निकल जाता है। इसलिए आरएफ आवृत्ति को कम करना चित्र में धराशायी रेखा को कम करने के समान है, जो प्रभावी रूप से संभावित कुएं की गहराई को कम करता है। इस कारण से इन ऊर्जावान परमाणुओं को हटाने के लिए उपयोग किए जाने वाले आरएफ स्रोत को प्रायः "आरएफ नाइफ" के रूप में जाना जाता है, क्योंकि यह ट्रैप से अधिक ऊर्जावान परमाणुओं को हटाने के लिए ट्रैप की क्षमता की ऊंचाई को प्रभावी रूप से कम कर देता है, और ट्रैप की उच्च ऊर्जा टेल को "काट" देता है। अतः ऊर्जा वितरण इस विधि का उपयोग रुबिडियम परमाणुओं के परिवर्तन को संक्षेपण महत्वपूर्ण तापमान से नीचे ठंडा करने के लिए किया गया था जिससे प्रथम प्रयोगात्मक रूप से देखा गया बोस-आइंस्टीन कंडेनसेट (बोस-आइंस्टीन कंडेनसेट) बनाया जा सकता है।[2]

ऑप्टिकल वाष्पीकरण

जबकि बोस-आइंस्टीन संघनन का प्रथम अवलोकन आरएफ संचालित बाष्पीकरणीय शीतलन का उपयोग करके चुंबकीय परमाणु ट्रैप में किया गया था, जिससे ऑप्टिकल द्विध्रुवीय ट्रैप अब संघनन प्राप्त करने के लिए बहुत अधिक सामान्य प्लेटफार्म हैं। और एमओटी से प्रारंभ होकर, ठंडे, फंसे हुए परमाणुओं को उच्च शक्ति, संगठित केंद्रित, ऑफ-रेजोनेंट लेजर किरण के केंद्र बिंदु पर स्थानांतरित किया जाता है। और अपने केंद्र पर लेजर का विद्युत क्षेत्र परमाणुओं में द्विध्रुवीय क्षणों को प्रेरित करने के लिए पर्याप्त रूप से सशक्त होता है, जो पुनः लेजर केंद्र पर अधिकतम विद्युत क्षेत्र की ओर आकर्षित होते हैं, जिससे प्रभावी रूप से उन्हें किरण केंद्र पर पकड़ने के लिए ट्रेपिंग की क्षमता उत्पन्न होती है।

इस प्रकार से ऑप्टिकल डिपोल ट्रैप (ओडीटी) में ऑप्टिकल ट्रैपिंग क्षमता की गहराई ट्रैपिंग लेजर प्रकाश की तीव्रता के समानुपाती होती है। इसलिए ट्रैपिंग लेजर किरण में शक्ति कम होने से ट्रैपिंग क्षमता की गहराई कम हो जाती है। जिससे आरएफ-संचालित वाष्पीकरण के स्तिथि में, परमाणुओं को सीमित करने वाले संभावित अवरोध की वास्तविक ऊंचाई वाष्पीकरण अनुक्रम के समय तय की जाती है, किन्तु आरएफ चाकू प्रभावी रूप से इस अवरोध की गहराई को कम कर देता है, जैसा कि इस पर पहले विचार किया गया था। चूंकि, ऑप्टिकल ट्रैप के लिए, लेजर शक्ति को कम करके वाष्पीकरण की सुविधा प्रदान की जाती है और इस प्रकार ट्रैपिंग क्षमता की गहराई कम हो जाती है। परिणामस्वरूप, ट्रैप में सबसे गर्म परमाणुओं में पर्याप्त गतिज ऊर्जा होगी जो इसे बाधा दीवारों पर बनाने और ट्रैप से बाहर निकलने में सक्षम होती है, जिससे शेष परमाणुओं की औसत ऊर्जा कम हो जाएगी जैसा कि पहले वर्णित किया गया है। जबकि ओडीटी के लिए ट्रैप की गहराई नगण्य हो सकती है (तापमान के संदर्भ में एमके के क्रम पर), इस ऑप्टिकल वाष्पीकरण प्रक्रिया की सरलता ने चुंबकीय बीईसी उत्पादन के शीघ्रता के पश्चात इसके पहले प्रदर्शन के बाद से इसे बीईसी प्रयोगों के लिए तीव्रता से लोकप्रिय बनाने में सहायता की है।[3]

यह भी देखें

संदर्भ

  1. Ketterle, Wolfgang; Van Druten, N. J. (1996). "फंसे हुए परमाणुओं का बाष्पीकरणीय शीतलन". Advances in Atomic, Molecular, and Optical Physics. 37: 181–236. Bibcode:1996AAMOP..37..181K. doi:10.1016/S1049-250X(08)60101-9. ISBN 9780120038374.
  2. Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. (14 July 1995). "तनु परमाणु वाष्प में बोस-आइंस्टीन संघनन का अवलोकन". Science. 269 (5221): 198–201. Bibcode:1995Sci...269..198A. doi:10.1126/science.269.5221.198. PMID 17789847.
  3. Barrett, M.D.; Sauer, J.A.; Chapman, M.S. (19 June 2001). "परमाणु बोस-आइंस्टीन कंडेनसेट का ऑल-ऑप्टिकल गठन". Physical Review Letters. 87 (1): 010404. arXiv:cond-mat/0106027. Bibcode:2001PhRvL..87a0404B. doi:10.1103/PhysRevLett.87.010404. PMID 11461452. S2CID 24415566.