सुपर-प्राइम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Prime numbers that occupy prime-numbered positions}}
{{Short description|Prime numbers that occupy prime-numbered positions}}
{{for|the computer program|SuperPrime}}
{{for|कंप्यूटर प्रोग्राम                                                                                      |सुपरप्राइम                                                                                            }}
'''सुपर-प्राइम''' संख्याएँ, जिन्हें उच्च-क्रम वाले अभाज्य या अभाज्य-अनुक्रमित अभाज्य (पीआईपी) के रूप में भी जाना जाता है, अभाज्य संख्याओं के अनुक्रम हैं जो सभी अभाज्य संख्याओं के अनुक्रम में अभाज्य-संख्या वाले स्थान पर होते हैं।
'''सुपर-प्राइम''' संख्याएँ, जिन्हें उच्च-क्रम वाले अभाज्य या अभाज्य-अनुक्रमित अभाज्य (पीआईपी) के रूप में भी जाना जाता है, अभाज्य संख्याओं के अनुक्रम हैं जो सभी अभाज्य संख्याओं के अनुक्रम में अभाज्य-संख्या वाले स्थान पर होते हैं।                                                                                                                                                                          


इसके बाद का  उपानुक्रम प्रारम्भ होता है
इसके बाद का  उपानुक्रम प्रारम्भ होता है

Revision as of 08:14, 8 August 2023

सुपर-प्राइम संख्याएँ, जिन्हें उच्च-क्रम वाले अभाज्य या अभाज्य-अनुक्रमित अभाज्य (पीआईपी) के रूप में भी जाना जाता है, अभाज्य संख्याओं के अनुक्रम हैं जो सभी अभाज्य संख्याओं के अनुक्रम में अभाज्य-संख्या वाले स्थान पर होते हैं।

इसके बाद का उपानुक्रम प्रारम्भ होता है

3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 56 3, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, ... (sequence A006450 in the OEIS).

अर्थात्, यदि p(n) nवीं अभाज्य संख्या को दर्शाता है, तो इस क्रम में संख्याएँ p(p(n)) के रूप की होती हैं।

ड्रेस्लर & पार्कर (1975) ने यह दिखाने के लिए एक कंप्यूटर-सहायता प्राप्त प्रमाण (सबसेट योग समस्या से जुड़ी गणनाओं के आधार पर) का उपयोग किया कि 96 से अधिक प्रत्येक पूर्णांक को अलग-अलग सुपर-प्राइम संख्याओं के योग के रूप में दर्शाया जा सकता है। उनका प्रमाण बर्ट्रेंड के अभिधारणा से मिलते-जुलते परिणाम पर निर्भर करता है, जिसमें कहा गया है कि (सुपर-प्राइम्स 5 और 11 के बीच बड़े अंतर के बाद) प्रत्येक सुपर-प्राइम संख्या अनुक्रम में अपने पूर्ववर्ती के दोगुने से भी कम है।


ब्रौघन & बार्नेट (2009)दिखाओ कि हैं

x तक सुपर-प्राइम्स इसका उपयोग यह दिखाने के लिए किया जा सकता है कि सभी सुपर-प्राइम्स का सेट छोटा सेट (कॉम्बिनेटरिक्स) है।

कोई भी "उच्च-क्रम" प्राइमनेस को उसी तरह से परिभाषित कर सकता है और जो की प्राइम्स के अनुरूप अनुक्रम प्राप्त कर सकता है (फर्नांडीज 1999)।

इस विषय पर एक भिन्नता, पैलिंड्रोमिक प्राइम सूचकांकों के साथ अभाज्य संख्याओं का अनुक्रम है, जिसकी प्रारंभ होती है

3, 5, 11, 17, 31, 547, 739, 877, 1087, 1153, 2081, 2381, ... (sequence A124173 in the OEIS).

संदर्भ

  • Bayless, Jonathan; Klyve, Dominic; Oliveira e Silva, Tomás (2013), "New bounds and computations on prime-indexed primes", Integers, 13: A43:1–A43:21, MR 3097157
  • Broughan, Kevin A.; Barnett, A. Ross (2009), "On the subsequence of primes having prime subscripts", Journal of Integer Sequences, 12, article 09.2.3.
  • Dressler, Robert E.; Parker, S. Thomas (1975), "Primes with a prime subscript", Journal of the ACM, 22 (3): 380–381, doi:10.1145/321892.321900, MR 0376599.
  • Fernandez, Neil (1999), An order of primeness, F(p).


बाहरी संबंध