संवेग संचालिका: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 18: Line 18:
यह संचालक तुल्यता<math display="block"> \hat{p} = -i\hbar \frac{\partial }{\partial x}</math>का सुझाव देता है, इसलिए कण का संवेग और वह मान जो तब मापा जाता है जब कोई कण समतल तरंग अवस्था में होता है, उपरोक्त संचालक का [[eigenvalue|इवोल्यूशन]] होता है।
यह संचालक तुल्यता<math display="block"> \hat{p} = -i\hbar \frac{\partial }{\partial x}</math>का सुझाव देता है, इसलिए कण का संवेग और वह मान जो तब मापा जाता है जब कोई कण समतल तरंग अवस्था में होता है, उपरोक्त संचालक का [[eigenvalue|इवोल्यूशन]] होता है।


 
चूंकि आंशिक व्युत्पन्न एक [[रैखिक ऑपरेटर|रैखिक संचालक]] है, इसलिए गति संचालक भी रैखिक है, और क्योंकि किसी भी तरंग फलन को अन्य राज्यों के [[ जितना कि सुपरइम्पोज़िशन | जितना कि सुपरइम्पोज़िशन]] के रूप में व्यक्त किया जा सकता है, जब यह गति संचालक संपूर्ण सुपरइम्पोज़्ड तरंग पर कार्य करता है, तो यह प्रत्येक विमान तरंग घटक के लिए गति आइगेनवैल्यू उत्पन्न करता है। ये नए घटक फिर नई स्थिति बनाने के लिए सुपरइम्पोज़ करते हैं, सामान्य तौर पर पुराने तरंग फलन का एक गुणक नहीं।
<s>चूंकि</s> आंशिक व्युत्पन्न एक [[रैखिक ऑपरेटर|रैखिक संचालक]] है, गति संचालक भी रैखिक है, और क्योंकि किसी भी तरंग फलन को अन्य राज्यों के [[ जितना कि सुपरइम्पोज़िशन | जितना कि सुपरइम्पोज़िशन]] के रूप में व्यक्त किया जा सकता है, जब यह गति संचालक संपूर्ण सुपरइम्पोज़्ड तरंग पर कार्य करता है, तो यह प्रत्येक विमान तरंग घटक के लिए गति आइगेनवैल्यू उत्पन्न करता है। ये नए घटक फिर नई स्थिति बनाने के लिए सुपरइम्पोज़ होते हैं, सामान्य तौर पर पुराने तरंग फलन का एक गुणक नहीं।


===तीन आयाम===
===तीन आयाम===
तीन आयामों में व्युत्पत्ति समान है, सिवाय इसके कि एक आंशिक व्युत्पन्न के बजाय ग्रेडिएंट संचालक [[ की ]] का उपयोग किया जाता है। तीन आयामों में, श्रोडिंगर के समीकरण का समतल तरंग समाधान है:
तीन आयामों में व्युत्पत्ति समान है, सिवाय इसके कि एक आंशिक व्युत्पन्न के बजाय ग्रेडिएंट संचालक [[ की | डेल]] का उपयोग किया जाता है। तीन आयामों में, श्रोडिंगर के समीकरण का समतल तरंग समाधान है:
<math display="block"> \psi = e^{\frac{i}{\hbar}(\mathbf{p}\cdot\mathbf{r}-E t)}</math>
<math display="block"> \psi = e^{\frac{i}{\hbar}(\mathbf{p}\cdot\mathbf{r}-E t)}</math>
और ढाल है
और ढाल <math display="block"> \begin{align}
<math display="block"> \begin{align}
\nabla \psi &= \mathbf{e}_x\frac{\partial \psi}{\partial x} + \mathbf{e}_y\frac{\partial \psi}{\partial y} + \mathbf{e}_z\frac{\partial \psi}{\partial z} \\  
\nabla \psi &= \mathbf{e}_x\frac{\partial \psi}{\partial x} + \mathbf{e}_y\frac{\partial \psi}{\partial y} + \mathbf{e}_z\frac{\partial \psi}{\partial z} \\  
& = \frac{i}{\hbar} \left ( p_x\mathbf{e}_x + p_y\mathbf{e}_y+ p_z\mathbf{e}_z \right)\psi \\
& = \frac{i}{\hbar} \left ( p_x\mathbf{e}_x + p_y\mathbf{e}_y+ p_z\mathbf{e}_z \right)\psi \\
& = \frac{i}{\hbar} \mathbf{p}\psi
& = \frac{i}{\hbar} \mathbf{p}\psi
\end{align}</math>
\end{align}</math>है, जहां {{math|'''e'''<sub>''x''</sub>}}, {{math|'''e'''<sub>''y''</sub>}}, और {{math|'''e'''<sub>''z''</sub>}} तीन स्थानिक आयामों के लिए इकाई वैक्टर हैं,<math display="block"> \mathbf{\hat{p}} = -i \hbar \nabla</math>यह गति संचालक स्थिति स्थान में है क्योंकि आंशिक व्युत्पन्न स्थानिक चर के संबंध में लिया गया था।
कहाँ {{math|'''e'''<sub>''x''</sub>}}, {{math|'''e'''<sub>''y''</sub>}}, और {{math|'''e'''<sub>''z''</sub>}} इसलिए, तीन स्थानिक आयामों के लिए इकाई सदिश हैं
<math display="block"> \mathbf{\hat{p}} = -i \hbar \nabla</math>
यह गति संचालक स्थिति स्थान में है क्योंकि आंशिक व्युत्पन्न स्थानिक चर के संबंध में लिया गया था।


==परिभाषा (स्थिति स्थान)==
==परिभाषा (स्थिति स्थान)==
{{see also|Position and momentum space}}
{{see also|स्थिति और गति स्थान}}


बिना विद्युत आवेश और बिना [[स्पिन (भौतिकी)]] वाले एक कण के लिए, संवेग संचालक को स्थिति के आधार पर इस प्रकार लिखा जा सकता है:<ref>''Quantum Mechanics Demystified'', D. McMahon, Mc Graw Hill (USA), 2006, {{ISBN|0-07-145546-9}}</ref>
बिना विद्युत आवेश और बिना [[स्पिन (भौतिकी)]] वाले एक कण के लिए, संवेग संचालक को स्थिति के आधार पर इस प्रकार लिखा जा सकता है:<ref>''Quantum Mechanics Demystified'', D. McMahon, Mc Graw Hill (USA), 2006, {{ISBN|0-07-145546-9}}</ref>
<math display="block">\mathbf{\hat{p}}=-i\hbar\nabla</math>
<math display="block">\mathbf{\hat{p}}=-i\hbar\nabla</math>
कहाँ {{math|∇}} [[ ग्रेडियेंट ]] संचालक है, {{math|''ħ''}} घटा हुआ प्लैंक स्थिरांक है, और {{math|''i''}} काल्पनिक इकाई है.
जहां {{math|∇}} [[ ग्रेडियेंट ]]संचालक है, {{math|''ħ''}} घटा हुआ प्लैंक स्थिरांक है, और {{math|''i''}} काल्पनिक इकाई है।
 
एक स्थानिक आयाम में, यह <math display="block">\hat{p}=\hat{p}_x=-i\hbar{\partial \over \partial x}.</math>बन जाता है।<ref>In the position coordinate representation,  that is, <math display="inline">-i \hbar \int dx \left|x\right\rangle \partial_x \langle x|.</math></ref>
 


एक स्थानिक आयाम में, यह बन जाता है<ref>In the position coordinate representation,  that is, <math display="inline">-i \hbar \int dx \left|x\right\rangle \partial_x \langle x|.</math></ref>
यह विहित संवेग की अभिव्यक्ति है। एक विद्युत चुम्बकीय क्षेत्र में आवेशित कण {{mvar|q}} के लिए, [[गेज परिवर्तन]] के दौरान, स्थिति अंतरिक्ष तरंग फलन एक [[टोपोलॉजिकल समूह|स्थानीय]] यू (1) समूह परिवर्तन से गुजरता है,<ref>{{Cite journal|last1=Zinn-Justin|first1=Jean|last2=Guida|first2=Riccardo| date=2008-12-04|title=गेज अपरिवर्तनशीलता|journal=Scholarpedia|language=en| volume=3|issue=12|pages=8287|doi=10.4249/scholarpedia.8287|bibcode=2008SchpJ...3.8287Z |issn=1941-6016|doi-access=free}}</ref> और <math display="inline"> \hat{p}\psi = - i \hbar \frac{\partial \psi}{\partial x} </math> इसका मूल्य बदल देगा। इसलिए, विहित गति गेज अपरिवर्तनीय नहीं है, और इसलिए मापने योग्य भौतिक मात्रा नहीं है।
<math display="block">\hat{p}=\hat{p}_x=-i\hbar{\partial \over \partial x}.</math>
यह विहित संवेग की अभिव्यक्ति है। आवेशित कण के लिए {{mvar|q}} एक विद्युत चुम्बकीय क्षेत्र में, [[गेज परिवर्तन]] के दौरान, स्थिति अंतरिक्ष तरंग फलन एक [[टोपोलॉजिकल समूह]] यू (1) समूह परिवर्तन से गुजरता है,<ref>{{Cite journal|last1=Zinn-Justin|first1=Jean|last2=Guida|first2=Riccardo| date=2008-12-04|title=गेज अपरिवर्तनशीलता|journal=Scholarpedia|language=en| volume=3|issue=12|pages=8287|doi=10.4249/scholarpedia.8287|bibcode=2008SchpJ...3.8287Z |issn=1941-6016|doi-access=free}}</ref> और <math display="inline"> \hat{p}\psi = - i \hbar \frac{\partial \psi}{\partial x} </math> इसका मूल्य बदल देगा. इसलिए, विहित गति गेज अपरिवर्तनीय नहीं है, और इसलिए मापने योग्य भौतिक मात्रा नहीं है।


गतिज गति, एक गेज अपरिवर्तनीय भौतिक मात्रा, विहित गति, [[अदिश क्षमता]] के संदर्भ में व्यक्त की जा सकती है{{mvar|φ}} और [[वेक्टर क्षमता]]{{math|'''A'''}}:<ref>''Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles'' (2nd Edition), R. Resnick, R. Eisberg, John Wiley & Sons, 1985, {{ISBN|978-0-471-87373-0}}</ref>
गतिज गति, एक गेज अपरिवर्तनीय भौतिक मात्रा, विहित गति, [[अदिश क्षमता]] {{mvar|φ}} और [[वेक्टर क्षमता]]{{math|'''A'''}} के संदर्भ में व्यक्त की जा सकती है :<ref>''Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles'' (2nd Edition), R. Resnick, R. Eisberg, John Wiley & Sons, 1985, {{ISBN|978-0-471-87373-0}}</ref><math display="block">\mathbf{\hat{P}} = -i\hbar\nabla - q\mathbf{A} </math>उपरोक्त अभिव्यक्ति को [[न्यूनतम युग्मन]] कहा जाता है। विद्युत रूप से तटस्थ कणों के लिए, विहित गति गतिज गति के समान है।
<math display="block">\mathbf{\hat{P}} = -i\hbar\nabla - q\mathbf{A} </math>
उपरोक्त अभिव्यक्ति को [[न्यूनतम युग्मन]] कहा जाता है। विद्युत रूप से तटस्थ कणों के लिए, विहित गति गतिज गति के बराबर है।


==गुण==
==गुण==


===हर्मिटीसिटी===
===हर्मिटीसिटी===
गति संचालक हमेशा एक [[हर्मिटियन ऑपरेटर|हर्मिटियन संचालक]] होता है (अधिक तकनीकी रूप से, गणित शब्दावली में एक स्व-सहायक संचालक) जब यह भौतिक (विशेष रूप से, सामान्य तरंग फलन) क्वांटम स्थितियों पर कार्य करता है।<ref>See [http://bohr.physics.berkeley.edu/classes/221/1112/notes/hilbert.pdf Lecture notes 1 by Robert Littlejohn] {{Webarchive|url=https://web.archive.org/web/20120617144946/http://bohr.physics.berkeley.edu/classes/221/1112/notes/hilbert.pdf |date=2012-06-17 }} for a specific mathematical discussion and proof for the case of a single, uncharged, spin-zero particle. See [http://bohr.physics.berkeley.edu/classes/221/1112/notes/spatialdof.pdf Lecture notes 4 by Robert Littlejohn] for the general case.</ref>
गति संचालक हमेशा एक [[हर्मिटियन ऑपरेटर|हर्मिटियन संचालक]] होता है (अधिक तकनीकी रूप से, गणित शब्दावली में एक स्व-सहायक संचालक) जब यह भौतिक (विशेष रूप से, सामान्य तरंग के) क्वांटम स्थितियों पर कार्य करता है।<ref>See [http://bohr.physics.berkeley.edu/classes/221/1112/notes/hilbert.pdf Lecture notes 1 by Robert Littlejohn] {{Webarchive|url=https://web.archive.org/web/20120617144946/http://bohr.physics.berkeley.edu/classes/221/1112/notes/hilbert.pdf |date=2012-06-17 }} for a specific mathematical discussion and proof for the case of a single, uncharged, spin-zero particle. See [http://bohr.physics.berkeley.edu/classes/221/1112/notes/spatialdof.pdf Lecture notes 4 by Robert Littlejohn] for the general case.</ref>
(कुछ कृत्रिम स्थितियों में, जैसे कि क्वांटम अर्ध-अनंत अंतराल पर स्थित है {{closed-open|0, ∞}}, संवेग संचालिका को हर्मिटियन बनाने का कोई तरीका नहीं है।<ref>{{cite journal|author= Bonneau,G., Faraut, J., Valent, G.|title=ऑपरेटरों के स्व-संयुक्त विस्तार और क्वांटम यांत्रिकी का शिक्षण|journal=American Journal of Physics |volume=69|pages=322–331| date=2001 | doi=10.1119/1.1328351 |issue=3 |arxiv=quant-ph/0103153|bibcode = 2001AmJPh..69..322B |s2cid=16949018 }}</ref> यह इस तथ्य से निकटता से संबंधित है कि एक अर्ध-अनंत अंतराल में अनुवादात्मक समरूपता नहीं हो सकती है - अधिक विशेष रूप से, इसमें एकात्मक संचालक [[अनुवाद ऑपरेटर (क्वांटम यांत्रिकी)|अनुवाद संचालक (क्वांटम यांत्रिकी)]] नहीं है। #अतिसूक्ष्म अनुवादों से व्युत्पत्ति देखें।)
 
(कुछ कृत्रिम स्थितियों में, जैसे कि क्वांटम अर्ध-अनंत अंतराल {{closed-open|0, ∞}} पर क्वांटम अवस्थाएं, संवेग संचालिका को हर्मिटियन बनाने का कोई तरह नहीं है।<ref>{{cite journal|author= Bonneau,G., Faraut, J., Valent, G.|title=ऑपरेटरों के स्व-संयुक्त विस्तार और क्वांटम यांत्रिकी का शिक्षण|journal=American Journal of Physics |volume=69|pages=322–331| date=2001 | doi=10.1119/1.1328351 |issue=3 |arxiv=quant-ph/0103153|bibcode = 2001AmJPh..69..322B |s2cid=16949018 }}</ref> यह इस तथ्य से निकटता से संबंधित है कि एक अर्ध-अनंत अंतराल में अनुवादात्मक समरूपता नहीं हो सकती है - अधिक विशेष रूप से, इसमें एकात्मक संचालक [[अनुवाद ऑपरेटर (क्वांटम यांत्रिकी)|अनुवाद संचालक (क्वांटम यांत्रिकी)]] नहीं है। नीचे देखें।)


===विहित रूपान्तरण संबंध===
===विहित रूपान्तरण संबंध===
{{further information|Canonical commutation relation}}
{{further information|कैननिकल कम्युटेशन संबंध}}


संवेग आधार और स्थिति आधार का उचित उपयोग करके कोई भी इसे आसानी से दिखा सकता है:
संवेग आधार और स्थिति आधार का उचित उपयोग करके कोई भी इसे आसानी से दिखा सकता है:
<math display="block"> \left [ \hat{x}, \hat{p} \right ] = \hat{x} \hat{p} - \hat{p} \hat{x} = i \hbar. </math>
<math display="block"> \left [ \hat{x}, \hat{p} \right ] = \hat{x} \hat{p} - \hat{p} \hat{x} = i \hbar. </math>
[[वर्नर हाइजेनबर्ग]] अनिश्चितता सिद्धांत इस सीमा को परिभाषित करता है कि किसी एकल अवलोकन योग्य प्रणाली की गति और स्थिति को एक बार में कितनी सटीकता से जाना जा सकता है। क्वांटम यांत्रिकी में, स्थिति संचालक और संवेग [[विहित संयुग्म चर]] हैं।
[[वर्नर हाइजेनबर्ग]] अनिश्चितता सिद्धांत इस सीमा को परिभाषित करता है कि किसी एकल अवलोकन योग्य प्रणाली की गति और स्थिति को एक बार में कितनी सटीकता से जाना जा सकता है। क्वांटम यांत्रिकी में, स्थिति संचालक और संवेग [[विहित संयुग्म चर|विहित संयुग्मचर]] हैं।


===फूरियर रूपांतरण===
===फूरियर रूपांतरण===
निम्नलिखित चर्चा ब्रा-केट नोटेशन का उपयोग करती है। कोई लिख सकता है
निम्नलिखित चर्चा ब्रा-केट नोटेशन का उपयोग करती है। कोई <math display="block"> \psi(x)=\langle x|\psi\rangle =\int\!\!dp~ \langle x|p\rangle \langle p|\psi\rangle = \int\!\!dp~ {e^{ixp/\hbar} \tilde \psi (p) \over \sqrt{2\pi\hbar}},</math>लिख सकता है, इसलिए टिल्ड समन्वय स्थान से संवेग स्थान में परिवर्तित होने में, फूरियर रूपांतरण का प्रतिनिधित्व करता है। इसके बाद यह माना जाता है कि
<math display="block"> \psi(x)=\langle x|\psi\rangle =\int\!\!dp~ \langle x|p\rangle \langle p|\psi\rangle = \int\!\!dp~ {e^{ixp/\hbar} \tilde \psi (p) \over \sqrt{2\pi\hbar}},</math> इसलिए टिल्ड, समन्वय स्थान से संवेग स्थान में परिवर्तित होने में, फूरियर रूपांतरण का प्रतिनिधित्व करता है। फिर यह उसे धारण करता है
<math display="block">  \hat{p}=  \int\!\!dp~      |  p    \rangle p \langle p|=  -i\hbar      \int\!\!dx~ |  x \rangle  \frac{ d}{d x} \langle x| ~,  </math>
<math display="block">  \hat{p}=  \int\!\!dp~      |  p    \rangle p \langle p|=  -i\hbar      \int\!\!dx~ |  x \rangle  \frac{ d}{d x} \langle x| ~,  </math>
अर्थात्, समन्वय स्थान में अभिनय करने वाला संवेग स्थानिक आवृत्ति <math display="block"> \langle  x | \hat{p} | \psi \rangle = - i \hbar \frac{d}{dx} \psi ( x ) .</math>से मेल खाता है।
अर्थात्, समन्वय स्थान में अभिनय करने वाला संवेग स्थानिक आवृत्ति से मेल खाता है,
 
<math display="block"> \langle  x | \hat{p} | \psi \rangle = - i \hbar \frac{d}{dx} \psi ( x ) .</math>
 
गति के आधार पर स्थिति संचालक के लिए एक समान परिणाम लागू होता है,
गति के आधार पर स्थिति संचालक के लिए एक समान परिणाम लागू होता है,
<math display="block"> \langle  p | \hat{x} | \psi \rangle =  i \hbar \frac{d}{dp} \psi ( p ), </math>
<math display="block"> \langle  p | \hat{x} | \psi \rangle =  i \hbar \frac{d}{dp} \psi ( p ), </math>
जिससे आगे उपयोगी संबंध बनेंगे,
जिससे आगे उपयोगी संबंध बनते हैं,
<math display="block"> \langle p | \hat{x} | p' \rangle = i \hbar \frac{d}{dp} \delta (p - p') ,</math>
<math display="block"> \langle p | \hat{x} | p' \rangle = i \hbar \frac{d}{dp} \delta (p - p') ,</math><math display="block"> \langle x | \hat{p} | x' \rangle = -i \hbar \frac{d}{dx} \delta (x - x') ,</math>
<math display="block"> \langle x | \hat{p} | x' \rangle = -i \hbar \frac{d}{dx} \delta (x - x') ,</math>
जहां {{mvar|δ}} डिराक के डेल्टा फलन के लिए है।
कहाँ {{mvar|δ}} डिराक के डेल्टा फलन के लिए है।


==अतिसूक्ष्म अनुवादों से व्युत्पत्ति==
==अतिसूक्ष्म अनुवादों से व्युत्पत्ति==
{{see also|Noether's theorem|Stone's theorem on one-parameter unitary groups}}
{{see also|नोएथर का प्रमेय|एक-पैरामीटर एकात्मक समूहों पर स्टोन का प्रमेय}}


अनुवाद संचालक (क्वांटम यांत्रिकी) को दर्शाया गया है {{math|''T''(''ε'')}}, कहाँ {{mvar|ε}} अनुवाद की लंबाई दर्शाता है. यह निम्नलिखित पहचान को संतुष्ट करता है:
अनुवाद संचालक (क्वांटम यांत्रिकी) को दर्शाया गया है {{math|''T''(''ε'')}} निरूपित किया जाता है, जहां {{mvar|ε}} अनुवाद की लंबाई प्रतिनिधित्व करता है। यह निम्नलिखित पहचान को संतुष्ट करता है:
<math display="block"> T(\varepsilon) | \psi \rangle =  \int dx T(\varepsilon) | x \rangle \langle x | \psi \rangle </math>
<math display="block"> T(\varepsilon) | \psi \rangle =  \int dx T(\varepsilon) | x \rangle \langle x | \psi \rangle </math>
वह बन जाता है
वह बन जाता है
<math display="block">\int dx | x + \varepsilon \rangle \langle x |\psi \rangle = \int dx | x \rangle \langle x - \varepsilon | \psi \rangle = \int dx | x \rangle  \psi(x - \varepsilon) </math>
<math display="block">\int dx | x + \varepsilon \rangle \langle x |\psi \rangle = \int dx | x \rangle \langle x - \varepsilon | \psi \rangle = \int dx | x \rangle  \psi(x - \varepsilon) </math>
फलन मान रहा हूँ {{mvar|ψ}} विश्लेषणात्मक फलन होने के लिए (यानी [[जटिल विमान]] के कुछ डोमेन में भिन्न कार्य), कोई [[टेलर श्रृंखला]] में विस्तार कर सकता है {{mvar|x}}:
<s>फलन</s> मान रहा हूँ {{mvar|ψ}} विश्लेषणात्मक फलन होने के लिए (यानी [[जटिल विमान]] के कुछ डोमेन में भिन्न कार्य), कोई [[टेलर श्रृंखला]] में विस्तार कर सकता है {{mvar|x}}:
<math display="block">\psi(x-\varepsilon) = \psi(x) - \varepsilon \frac{d \psi}{dx} </math>
<math display="block">\psi(x-\varepsilon) = \psi(x) - \varepsilon \frac{d \psi}{dx} </math>
अत: के अतिसूक्ष्म मानों के लिए {{mvar|ε}}:
अत: के अतिसूक्ष्म मानों के लिए {{mvar|ε}}:

Revision as of 22:44, 7 August 2023

क्वांटम यांत्रिकी में, संवेग संचालक रैखिक संवेग (भौतिकी) से जुड़ा संचालक (भौतिकी) है। गति संचालक, स्थिति प्रतिनिधित्व में, एक अंतर संचालक का एक उदाहरण है। एक स्थानिक आयाम में एक कण के स्थिति के लिए, परिभाषा है:

जहां ħ प्लैंक का घटा हुआ स्थिरांक है, i काल्पनिक इकाई है, x स्थानिक समन्वय है, और एक आंशिक व्युत्पन्न (d/dx) के बजाय एक कुल व्युत्पन्न ( द्वारा दर्शाया गया है ) का उपयोग किया जाता हैके स्थान पर चूँकि तरंग फलन भी समय का एक कार्य है। टोपी एक संचालक को इंगित करती है. भिन्न तरंग फलन पर संचालक का अनुप्रयोग इस प्रकार है:
हिल्बर्ट स्पेस के आधार पर जिसमें संवेग निरूपण में अभिव्यक्त संवेग आइजिनस्टेट सम्मिलित हैं, संचालक की कार्रवाई बस p से गुणा होती है, यानी यह एक गुणन संचालक है, जैसे स्थिति प्रतिनिधित्व में स्थिति संचालक एक गुणन संचालक है। ध्यान दें कि उपरोक्त परिभाषा विहित गति है, जो एक विद्युत चुम्बकीय क्षेत्र में आवेशित कणों के लिए गेज-अपरिवर्तनीय नहीं है और मापने योग्य भौतिक मात्रा नहीं है। उस स्थिति में, विहित गति गतिज गति के समान नहीं है।

1920 के दशक में क्वांटम यांत्रिकी विकसित होने के समय, गति संचालकको को कई सैद्धांतिक भौतिकविदों द्वारा पाया गया था, जिनमें नील्स बोह्र, अर्नोल्ड सोमरफेल्ड, इरविन श्रोडिंगर और यूजीन विग्नर सम्मिलित थे। इसके अस्तित्व और स्वरूप को कभी-कभी क्वांटम यांत्रिकी के मूलभूत सिद्धांतों में से एक के रूप में लिया जाता है।

डी ब्रॉगली समतल तरंगों से उत्पत्ति

संवेग और ऊर्जा संचालकों का निर्माण निम्नलिखित तरह से किया जा सकता है।[1]

एक आयाम

एक आयाम में शुरू करते हुए, श्रोडिंगर के एकल मुक्त कण के समीकरण के लिए समतल तरंग समाधान का उपयोग करते हुए,

जहां p को x- दिशा में गति के रूप में व्याख्या किया जाता है और E कण ऊर्जा है। अंतरिक्ष के संबंध में पहला क्रम आंशिक व्युत्पन्न
है।


यह संचालक तुल्यता

का सुझाव देता है, इसलिए कण का संवेग और वह मान जो तब मापा जाता है जब कोई कण समतल तरंग अवस्था में होता है, उपरोक्त संचालक का इवोल्यूशन होता है।

चूंकि आंशिक व्युत्पन्न एक रैखिक संचालक है, इसलिए गति संचालक भी रैखिक है, और क्योंकि किसी भी तरंग फलन को अन्य राज्यों के जितना कि सुपरइम्पोज़िशन के रूप में व्यक्त किया जा सकता है, जब यह गति संचालक संपूर्ण सुपरइम्पोज़्ड तरंग पर कार्य करता है, तो यह प्रत्येक विमान तरंग घटक के लिए गति आइगेनवैल्यू उत्पन्न करता है। ये नए घटक फिर नई स्थिति बनाने के लिए सुपरइम्पोज़ करते हैं, सामान्य तौर पर पुराने तरंग फलन का एक गुणक नहीं।

तीन आयाम

तीन आयामों में व्युत्पत्ति समान है, सिवाय इसके कि एक आंशिक व्युत्पन्न के बजाय ग्रेडिएंट संचालक डेल का उपयोग किया जाता है। तीन आयामों में, श्रोडिंगर के समीकरण का समतल तरंग समाधान है:

और ढाल
है, जहां ex, ey, और ez तीन स्थानिक आयामों के लिए इकाई वैक्टर हैं,
यह गति संचालक स्थिति स्थान में है क्योंकि आंशिक व्युत्पन्न स्थानिक चर के संबंध में लिया गया था।

परिभाषा (स्थिति स्थान)

बिना विद्युत आवेश और बिना स्पिन (भौतिकी) वाले एक कण के लिए, संवेग संचालक को स्थिति के आधार पर इस प्रकार लिखा जा सकता है:[2]

जहां ग्रेडियेंट संचालक है, ħ घटा हुआ प्लैंक स्थिरांक है, और i काल्पनिक इकाई है।

एक स्थानिक आयाम में, यह

बन जाता है।[3]


यह विहित संवेग की अभिव्यक्ति है। एक विद्युत चुम्बकीय क्षेत्र में आवेशित कण q के लिए, गेज परिवर्तन के दौरान, स्थिति अंतरिक्ष तरंग फलन एक स्थानीय यू (1) समूह परिवर्तन से गुजरता है,[4] और इसका मूल्य बदल देगा। इसलिए, विहित गति गेज अपरिवर्तनीय नहीं है, और इसलिए मापने योग्य भौतिक मात्रा नहीं है।

गतिज गति, एक गेज अपरिवर्तनीय भौतिक मात्रा, विहित गति, अदिश क्षमता φ और वेक्टर क्षमताA के संदर्भ में व्यक्त की जा सकती है :[5]

उपरोक्त अभिव्यक्ति को न्यूनतम युग्मन कहा जाता है। विद्युत रूप से तटस्थ कणों के लिए, विहित गति गतिज गति के समान है।

गुण

हर्मिटीसिटी

गति संचालक हमेशा एक हर्मिटियन संचालक होता है (अधिक तकनीकी रूप से, गणित शब्दावली में एक स्व-सहायक संचालक) जब यह भौतिक (विशेष रूप से, सामान्य तरंग के) क्वांटम स्थितियों पर कार्य करता है।[6]

(कुछ कृत्रिम स्थितियों में, जैसे कि क्वांटम अर्ध-अनंत अंतराल [0, ∞) पर क्वांटम अवस्थाएं, संवेग संचालिका को हर्मिटियन बनाने का कोई तरह नहीं है।[7] यह इस तथ्य से निकटता से संबंधित है कि एक अर्ध-अनंत अंतराल में अनुवादात्मक समरूपता नहीं हो सकती है - अधिक विशेष रूप से, इसमें एकात्मक संचालक अनुवाद संचालक (क्वांटम यांत्रिकी) नहीं है। नीचे देखें।)

विहित रूपान्तरण संबंध

संवेग आधार और स्थिति आधार का उचित उपयोग करके कोई भी इसे आसानी से दिखा सकता है:

वर्नर हाइजेनबर्ग अनिश्चितता सिद्धांत इस सीमा को परिभाषित करता है कि किसी एकल अवलोकन योग्य प्रणाली की गति और स्थिति को एक बार में कितनी सटीकता से जाना जा सकता है। क्वांटम यांत्रिकी में, स्थिति संचालक और संवेग विहित संयुग्मचर हैं।

फूरियर रूपांतरण

निम्नलिखित चर्चा ब्रा-केट नोटेशन का उपयोग करती है। कोई

लिख सकता है, इसलिए टिल्ड समन्वय स्थान से संवेग स्थान में परिवर्तित होने में, फूरियर रूपांतरण का प्रतिनिधित्व करता है। इसके बाद यह माना जाता है कि
अर्थात्, समन्वय स्थान में अभिनय करने वाला संवेग स्थानिक आवृत्ति
से मेल खाता है।


गति के आधार पर स्थिति संचालक के लिए एक समान परिणाम लागू होता है,

जिससे आगे उपयोगी संबंध बनते हैं,
जहां δ डिराक के डेल्टा फलन के लिए है।

अतिसूक्ष्म अनुवादों से व्युत्पत्ति

अनुवाद संचालक (क्वांटम यांत्रिकी) को दर्शाया गया है T(ε) निरूपित किया जाता है, जहां ε अनुवाद की लंबाई प्रतिनिधित्व करता है। यह निम्नलिखित पहचान को संतुष्ट करता है:

वह बन जाता है
फलन मान रहा हूँ ψ विश्लेषणात्मक फलन होने के लिए (यानी जटिल विमान के कुछ डोमेन में भिन्न कार्य), कोई टेलर श्रृंखला में विस्तार कर सकता है x:
अत: के अतिसूक्ष्म मानों के लिए ε:
जैसा कि शास्त्रीय यांत्रिकी से ज्ञात है, संवेग अनुवाद (भौतिकी) का जनक है, इसलिए अनुवाद और संवेग संचालकों के बीच संबंध है:[further explanation needed]
इस प्रकार


4-संवेग संचालिका

उपरोक्त 3डी संवेग संचालक और ऊर्जा संचालक को 4-गति में सम्मिलित करना (1-रूप के साथ) (+ − − −) मीट्रिक हस्ताक्षर):

4-मोमेंटम संचालक प्राप्त करता है:
कहाँ μ 4-ढाल है, और बन जाता है + 3-मोमेंटम संचालक से पहले। यह संचालक सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत में होता है, जैसे कि डायराक समीकरण और अन्य सापेक्षतावादी तरंग समीकरण, चूंकि ऊर्जा और गति उपरोक्त 4-गति वेक्टर में संयोजित होते हैं, गति और ऊर्जा संचालक अंतरिक्ष और समय डेरिवेटिव के अनुरूप होते हैं, और उन्हें लोरेंत्ज़ सहप्रसरण के लिए पहले क्रम के आंशिक व्युत्पन्न होने की आवश्यकता होती है।

गामा मैट्रिक्स के साथ अनुबंध करके 4-मोमेंटम का डिराक संचालक और डिराक स्लैश दिया जाता है:

यदि हस्ताक्षर थे (− + + +), संचालक होगा
बजाय।

यह भी देखें

संदर्भ

  1. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd Edition), R. Resnick, R. Eisberg, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0
  2. Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546-9
  3. In the position coordinate representation, that is,
  4. Zinn-Justin, Jean; Guida, Riccardo (2008-12-04). "गेज अपरिवर्तनशीलता". Scholarpedia (in English). 3 (12): 8287. Bibcode:2008SchpJ...3.8287Z. doi:10.4249/scholarpedia.8287. ISSN 1941-6016.
  5. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd Edition), R. Resnick, R. Eisberg, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0
  6. See Lecture notes 1 by Robert Littlejohn Archived 2012-06-17 at the Wayback Machine for a specific mathematical discussion and proof for the case of a single, uncharged, spin-zero particle. See Lecture notes 4 by Robert Littlejohn for the general case.
  7. Bonneau,G., Faraut, J., Valent, G. (2001). "ऑपरेटरों के स्व-संयुक्त विस्तार और क्वांटम यांत्रिकी का शिक्षण". American Journal of Physics. 69 (3): 322–331. arXiv:quant-ph/0103153. Bibcode:2001AmJPh..69..322B. doi:10.1119/1.1328351. S2CID 16949018.{{cite journal}}: CS1 maint: multiple names: authors list (link)