सात-आयामी क्रॉस उत्पाद: Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 99: Line 99:
<math>\mathbf{e}_i \mathbf{\times} \mathbf{e}_j =  \varepsilon _{ijk} \mathbf{e}_k, </math>
<math>\mathbf{e}_i \mathbf{\times} \mathbf{e}_j =  \varepsilon _{ijk} \mathbf{e}_k, </math>


जहाँ <math>\varepsilon _{ijk}</math> जब ijk = 123, 145, 176, 246, 257, 347, 365 सकारात्मक मान +1 के साथ एक पूरी तरह से एंटीसिमेट्रिक टेंसर है।
जब ijk = 123, 145, 176, 246, 257, 347, 365 होता है तब <math>\varepsilon _{ijk}</math> सकारात्मक मान +1 के साथ एक पूरी तरह से असममित सदिश है।


इस तालिका का शीर्ष बाएँ 3 × 3 कोना तीन आकारों में क्रॉस गुणनफल देता है।
इस तालिका का शीर्ष बाएँ 3 × 3 कोना तीन आकारों में क्रॉस गुणनफल देता है।


==परिभाषा==
==परिभाषा==
[[ यूक्लिडियन स्थान ]] V पर क्रॉस गुणनफल V × V से V तक एक [[द्विरेखीय मानचित्र]] है, V में सदिश 'x' और 'y' को दूसरे सदिश 'x' × 'y' में मैप करता है, V में भी, जहां 'x' × ' y' में गुण हैं<ref name=Massey0/><ref name=Brown>
[[ यूक्लिडियन स्थान ]]V पर क्रॉस गुणनफल V × V से V तक एक [[द्विरेखीय मानचित्र|द्विरेखीय आलेखन]] है, जहाँ सदिश 'x' और 'y' और दूसरे सदिश 'x' × 'y' को V में आलेख करता है।
 
जहां 'x' × ' y' में गुण हैं:<ref name="Massey0" /><ref name="Brown">
Mappings are restricted to be bilinear by {{Harv|Massey|1993}} and {{cite journal |title=Vector cross products |author1=Robert B Brown  |author2=Alfred Gray  |name-list-style=amp |pages=222–236 |journal=Commentarii Mathematici Helvetici |volume=42  |year=1967 |issue= 1/December |doi=10.1007/BF02564418 |publisher=Birkhäuser Basel|s2cid=121135913 }}.</ref>
Mappings are restricted to be bilinear by {{Harv|Massey|1993}} and {{cite journal |title=Vector cross products |author1=Robert B Brown  |author2=Alfred Gray  |name-list-style=amp |pages=222–236 |journal=Commentarii Mathematici Helvetici |volume=42  |year=1967 |issue= 1/December |doi=10.1007/BF02564418 |publisher=Birkhäuser Basel|s2cid=121135913 }}.</ref>
*रूढ़िवादिता:
*वर्ग समीकरण:
::<math>\mathbf{x} \cdot (\mathbf{x} \times \mathbf{y}) = (\mathbf{x} \times \mathbf{y}) \cdot \mathbf{y}=0,</math>
:<math>\mathbf{x} \cdot (\mathbf{x} \times \mathbf{y}) = (\mathbf{x} \times \mathbf{y}) \cdot \mathbf{y}=0,</math>
*[[सामान्य (गणित)]]:
*[[सामान्य (गणित)|आकार (गणित)]]:
::<math>|\mathbf{x} \times \mathbf{y}|^2 = |\mathbf{x}|^2 |\mathbf{y}|^2 - (\mathbf{x} \cdot \mathbf{y})^2 </math>
:<math>|\mathbf{x} \times \mathbf{y}|^2 = |\mathbf{x}|^2 |\mathbf{y}|^2 - (\mathbf{x} \cdot \mathbf{y})^2 </math>
जहां (x·y) यूक्लिडियन [[डॉट उत्पाद|डॉट गुणनफल]] है और |x| नॉर्म (गणित) है। पहली संपत्ति बताती है कि गुणनफल उसके तर्कों के लंबवत है, जबकि दूसरी संपत्ति गुणनफल का परिमाण बताती है। सदिश के बीच एंगल#डॉट गुणनफल और सामान्यीकरण ''θ'' के संदर्भ में एक समतुल्य अभिव्यक्ति<ref name=Hildebrand>{{cite book |title=अनुप्रयुक्त गणित के तरीके|author=Francis Begnaud Hildebrand |page=24 |url=https://books.google.com/books?id=17EZkWPz_eQC&pg=PA24|isbn=0-486-67002-3 |edition=Reprint of Prentice-Hall 1965 2nd|publisher=Courier Dover Publications |year=1992}}
जहां (x·y) यूक्लिडियन [[डॉट उत्पाद|डॉट गुणनफल]] है और |x| यूक्लिडियन प्रमाण है। पहला  गुण बताता है कि गुणनफल उसके तर्कों के वर्ग समीकरण है, जबकि दूसरा गुण गुणनफल का [[सामान्य (गणित)|आकार]] बताता है। सदिश के बीच कोण ''θ के'' गुणनफल और सामान्यीकरण के संदर्भ में एक समतुल्य अभिव्यक्ति<ref name="Hildebrand">{{cite book |title=अनुप्रयुक्त गणित के तरीके|author=Francis Begnaud Hildebrand |page=24 |url=https://books.google.com/books?id=17EZkWPz_eQC&pg=PA24|isbn=0-486-67002-3 |edition=Reprint of Prentice-Hall 1965 2nd|publisher=Courier Dover Publications |year=1992}}
</ref> है<ref name = Lounesto/>
</ref> है<ref name="Lounesto" />


:<math>|\mathbf{x} \times \mathbf{y}| = |\mathbf{x}| |\mathbf{y}| \sin \theta, </math>
:<math>|\mathbf{x} \times \mathbf{y}| = |\mathbf{x}| |\mathbf{y}| \sin \theta, </math>
जो x और y के तल में दो सदिशों की भुजा वाले समांतर [[चतुर्भुज]] का क्षेत्रफल है।<ref>{{cite book
जो x और y के सतह में दो सदिशों की भुजा वाले समांतर [[चतुर्भुज]] का क्षेत्रफल है।<ref>{{cite book
|title=A Course in the Geometry of N Dimensions
|title=A Course in the Geometry of N Dimensions
|first1=M. G.
|first1=M. G.
Line 123: Line 125:
|page=19
|page=19
|url=https://books.google.com/books?id=_dFJ6pSzRLkC&pg=PA19}}
|url=https://books.google.com/books?id=_dFJ6pSzRLkC&pg=PA19}}
</ref> परिमाण की स्थिति का तीसरा कथन है
</ref> [[सामान्य (गणित)|आकार]] की स्थिति का तीसरा कथन है:


: <math>|\mathbf{x} \times \mathbf{y}| =  |\mathbf{x}| |\mathbf{y}|~\mbox{if} \  \left( \mathbf{x} \cdot \mathbf{y} \right)= 0,</math>
: <math>|\mathbf{x} \times \mathbf{y}| =  |\mathbf{x}| |\mathbf{y}|~\mbox{if} \  \left( \mathbf{x} \cdot \mathbf{y} \right)= 0,</math>
Line 130: Line 132:
</ref>
</ref>


'''<br />परिभाषित गुणों के परिणाम'''


==परिभाषित गुणों के परिणाम==
द्विरेखीयता, रूढ़िवादिता और परिमाण के गुणों को देखते हुए, एक गैर-शून्य क्रॉस गुणनफल केवल तीन और सप्त आकारों में मौजूद होता है।<ref name=Massey2>
द्विरेखीयता, रूढ़िवादिता और परिमाण के गुणों को देखते हुए, एक गैर-शून्य क्रॉस गुणनफल केवल तीन और सप्त आकारों में मौजूद होता है।<ref name=Massey2>
{{cite journal |title=Cross products of vectors in higher dimensional Euclidean spaces |author=WS Massey |year=1983 |jstor=2323537|quote=If one requires only three basic properties of the cross product ... it turns out that a cross product of vectors exists only in 3-dimensional and 7-dimensional Euclidean space. |pages=697–701 |journal=The American Mathematical Monthly |volume=90 |issue=10 |doi=10.2307/2323537}}</ref><ref name = Lounesto>Lounesto, pp. 96–97
{{cite journal |title=Cross products of vectors in higher dimensional Euclidean spaces |author=WS Massey |year=1983 |jstor=2323537|quote=If one requires only three basic properties of the cross product ... it turns out that a cross product of vectors exists only in 3-dimensional and 7-dimensional Euclidean space. |pages=697–701 |journal=The American Mathematical Monthly |volume=90 |issue=10 |doi=10.2307/2323537}}</ref><ref name = Lounesto>Lounesto, pp. 96–97

Revision as of 11:12, 12 July 2023

गणित में, सप्त आकारीय क्रॉस गुणनफल, सप्त आकारीय यूक्लिडियन अंतरिक्ष में सदिश पर एक द्विरेखीय संचालक है। यह किन्हीं दो सदिशों a, b और सदिश a × b को में निर्दिष्ट करता है।[1] तीन आकारों में क्रॉस गुणनफल की तरह, सप्त आकारीय गुणनफल प्रतिविनिमय है और a × b में a और b दोनों के लिए समकोण है। तीन आकारों के विपरीत, यह जैकोबी समरूपता को संतुष्ट नहीं करता है, और त्रि-आकारीय क्रॉस गुणनफल एक संकेत तक अद्वितीय है, जबकि सप्त आकारीय क्रॉस गुणनफल कई हैं। सप्त आकारीय क्रॉस गुणनफल का अष्टकोणों से वही संबंध है जो त्रि-आकारीय गुणनफल का चतुर्भुजों से है।

सप्त आकारीय क्रॉस गुणनफल तीन आकारों के अतिरिक्त क्रॉस गुणनफल को सामान्यीकृत करने का एक तरीका है, और यह दो सदिशों का एकमात्र अन्य द्विरेखीय गुणनफल है जो सदिश-मान, समकोण और 3D स्तिथियों के समान परिमाण है।[2]अन्य आकारों में तीन या अधिक सदिश के सदिश-मान वाले गुणनफल होते हैं जो इन शर्तों को पूरा करते हैं, और द्विसदिश परिणामों के साथ बाइनरी गुणनफल होते हैं।

गुणन सारणी

× e1 e2 e3 e4 e5 e6 e7
e1 0 e3 e2 e5 e4 e7 e6
e2 e3 0 e1 e6 e7 e4 e5
e3 e2 e1 0 e7 e6 e5 e4
e4 e5 e6 e7 0 e1 e2 e3
e5 e4 e7 e6 e1 0 e3 e2
e6 e7 e4 e5 e2 e3 0 e1
e7 e6 e5 e4 e3 e2 e1 0

दी गई सारणी की तरह गुणनफल को गुणन सारणी द्वारा दर्शाया जा सकता है। यह तालिका, केली के कारण,[3][4] प्रत्येक i, j के लिए 1 से 7 तक प्रसामान्य आधार सदिश ei और ej का गुणनफल देता है। उदाहरण के लिए, तालिका से

तालिका का उपयोग किन्हीं दो सदिशों के गुणनफल की गणना करने के लिए किया जा सकता है। उदाहरण के लिए, x × y के e1 घटक की गणना करने के लिए e1 उत्पन्न करने के लिए गुणा करने वाले आधार सदिश को चुना जा सकता है

इसे अन्य छह घटकों के लिए दोहराया जा सकता है।

परिभाषा को पूरा करने वाले प्रत्येक गुणनफल के लिए एक तालिका है और ऐसी 480 तालिकाएँ हैं।[5] इस तालिका को संबंध द्वारा संक्षेपित किया जा सकता है[4]:

जब ijk = 123, 145, 176, 246, 257, 347, 365 होता है तब  सकारात्मक मान +1 के साथ एक पूरी तरह से असममित सदिश है।

इस तालिका का शीर्ष बाएँ 3 × 3 कोना तीन आकारों में क्रॉस गुणनफल देता है।

परिभाषा

यूक्लिडियन स्थान V पर क्रॉस गुणनफल V × V से V तक एक द्विरेखीय आलेखन है, जहाँ सदिश 'x' और 'y' और दूसरे सदिश 'x' × 'y' को V में आलेख करता है।

जहां 'x' × ' y' में गुण हैं:[1][6]

  • वर्ग समीकरण:

जहां (x·y) यूक्लिडियन डॉट गुणनफल है और |x| यूक्लिडियन प्रमाण है। पहला गुण बताता है कि गुणनफल उसके तर्कों के वर्ग समीकरण है, जबकि दूसरा गुण गुणनफल का आकार बताता है। सदिश के बीच कोण θ के गुणनफल और सामान्यीकरण के संदर्भ में एक समतुल्य अभिव्यक्ति[7] है[8]

जो x और y के सतह में दो सदिशों की भुजा वाले समांतर चतुर्भुज का क्षेत्रफल है।[9] आकार की स्थिति का तीसरा कथन है:

यदि x × x = 0 को एक अलग अभिगृहीत माना जाता है।[10]


परिभाषित गुणों के परिणाम

द्विरेखीयता, रूढ़िवादिता और परिमाण के गुणों को देखते हुए, एक गैर-शून्य क्रॉस गुणनफल केवल तीन और सप्त आकारों में मौजूद होता है।[2][8][10] इसे क्रॉस गुणनफल के लिए आवश्यक गुणों को निर्धारित करके, फिर एक समीकरण निकालकर दिखाया जा सकता है जो केवल तभी संतुष्ट होता है जब आयाम 0, 1, 3 या 7 हो। शून्य आकारों में केवल शून्य सदिश होता है, जबकि एक आयाम में सभी सदिश होते हैं समानांतर हैं, इसलिए इन दोनों मामलों में गुणनफल समान रूप से शून्य होना चाहिए।

0, 1, 3 और 7 आकारों पर प्रतिबंध हर्विट्ज़ के प्रमेय (मानक विभाजन बीजगणित) से संबंधित है|हर्विट्ज़ के प्रमेय, कि मानक विभाजन बीजगणित केवल 1, 2, 4 और 8 आकारों में ही संभव है। क्रॉस गुणनफल मानक विभाजन बीजगणित के गुणनफल से बनता है, इसे बीजगणित के 0, 1, 3, या 7 काल्पनिक आकारों तक सीमित करके, केवल तीन और सप्त आकारों में गैर-शून्य गुणनफल देता है।[11] त्रि-आकारीय क्रॉस गुणनफल के विपरीत, जो अद्वितीय है (चिह्न के अतिरिक्त), सप्त आकारों में कई संभावित बाइनरी क्रॉस गुणनफल हैं। इसे देखने का एक तरीका यह है कि सदिश x और y के किसी भी जोड़े को ध्यान में रखें और परिमाण का कोई भी सदिश v |v| = |x||y| x और y द्वारा फैलाए गए विमान के लंबवत पांच-आकारीय स्थान में पाप θ, गुणन तालिका (और आधार सदिश के एक संबद्ध सेट) के साथ एक क्रॉस गुणनफल ढूंढना संभव है जैसे कि x × y = v तीन आकारों के विपरीत, x × y = a × b का अर्थ यह नहीं है कि a और b, x और y के समान तल में हैं।[8]

आगे के गुण परिभाषा से अनुसरण करते हैं, जिनमें निम्नलिखित समरूपता सम्मिलित हैं:

  1. प्रतिविनिमय:
  2. अदिश त्रिगुण गुणनफल:
  3. मालसेव बीजगणित:[8]#:

अन्य गुण केवल त्रि-आकारीय स्तिथियों में अनुसरण करते हैं, और सप्त आकारीय क्रॉस गुणनफल से संतुष्ट नहीं होते हैं, विशेष रूप से,

  1. सदिश त्रिपक्षीय गुणनफल:
  2. जैकोबी समरूपता:[8]#:

क्योंकि जैकोबी समरूपता संतुष्ट नहीं है, सप्तआकारीय क्रॉस गुणनफल आर नहीं देता है7झूठ बीजगणित की संरचना।

अभिव्यक्तियों का समन्वय

किसी विशेष क्रॉस गुणनफल को परिभाषित करने के लिए, एक ऑर्थोनॉर्मल आधार {ईj} का चयन किया जा सकता है और एक गुणन तालिका प्रदान की जा सकती है जो सभी गुणनफलों को निर्धारित करती है {ईi × औरj}. #गुणा तालिका में एक संभावित गुणन सारणी का वर्णन किया गया है, लेकिन यह अद्वितीय नहीं है।[5]तीन आकारों के विपरीत, कई तालिकाएँ हैं क्योंकि यूनिट सदिश की प्रत्येक जोड़ी पांच अन्य यूनिट सदिश के लंबवत है, जिससे प्रत्येक क्रॉस गुणनफल के लिए कई विकल्प मिलते हैं।

एक बार जब हम एक गुणन तालिका स्थापित कर लेते हैं, तो इसे आधार के संदर्भ में x और y को व्यक्त करके और द्विरेखीयता के माध्यम से x × y का विस्तार करके सामान्य सदिश x और y पर लागू किया जाता है।

× e1 e2 e3 e4 e5 e6 e7
e1 0 e4 e7 e2 e6 e5 e3
e2 e4 0 e5 e1 e3 e7 e6
e3 e7 e5 0 e6 e2 e4 e1
e4 e2 e1 e6 0 e7 e3 e5
e5 e6 e3 e2 e7 0 e1 e4
e6 e5 e7 e4 e3 e1 0 e2
e7 e3 e6 e1 e5 e4 e2 0

ई का उपयोग करना1 तब7 आधार सदिश के लिए परिचय में दी गई गुणन सारणी से भिन्न गुणन तालिका दी गई है, जिससे एक भिन्न क्रॉस गुणनफल प्राप्त होता है, जिसे एंटीकम्यूटेटिविटी के साथ दिया गया है।[8]

इस नियम को अधिक संक्षेप में इस प्रकार लिखा जा सकता है

i = 1...7 मॉड्यूलर अंकगणित 7 और सूचकांकों i, i + 1 और i + 3 के साथ समान रूप से क्रमपरिवर्तन की अनुमति दी गई। एंटीकम्यूटेटिविटी के साथ मिलकर यह गुणनफल उत्पन्न करता है। यह नियम सीधे तालिका में शून्य के विकर्ण के ठीक समीप दो विकर्ण उत्पन्न करता है। इसके अतिरिक्त, #परिभाषित_गुणों_के_परिणाम_पर उपधारा में एक समरूपता से,

जो आगे की ओर विकर्ण उत्पन्न करता है, इत्यादि।

j क्रॉस गुणनफल x × y का घटक ई की सभी घटनाओं का चयन करके दिया गया हैj तालिका में और बाएं कॉलम से x और शीर्ष पंक्ति से y के संबंधित घटकों को एकत्रित करना। परिणाम है:

चूँकि क्रॉस गुणनफल द्विरेखीय है इसलिए ऑपरेटर x×– को एक मैट्रिक्स के रूप में लिखा जा सकता है, जो रूप लेता है[citation needed]

इसके बाद क्रॉस गुणनफल दिया जाता है


विभिन्न गुणन सारणी

यहां उपयोग की गई दो गुणन तालिकाओं के लिए फ़ानो विमान।

इस आलेख में दो अलग-अलग गुणन तालिकाओं का उपयोग किया गया है, और भी हैं।[5][12] इन गुणन तालिकाओं को फ़ानो विमान द्वारा चित्रित किया गया है, रेफरी नाम=फौसर>

Rafał Abłamowicz; Bertfried Fauser (2000). क्लिफोर्ड बीजगणित और गणितीय भौतिकी में उनके अनुप्रयोग: बीजगणित और भौतिकी. Springer. p. 26. ISBN 0-8176-4182-3.

</ref>[13]और इन्हें यहां उपयोग की गई दो तालिकाओं के चित्र में दिखाया गया है: सबसे ऊपर, सबिनिन, सबितनेवा और शेस्ताकोव द्वारा वर्णित तालिका, और सबसे नीचे लूनेस्टो द्वारा वर्णित तालिका। फ़ानो आरेख (आरेख में रेखाओं का सेट) के अंतर्गत संख्याएँ प्रत्येक स्तिथियों में सप्त स्वतंत्र गुणनफलों के लिए सूचकांकों का एक सेट दर्शाती हैं, जिसे ijk → 'e' के रूप में समझा जाता है।i × औरj = औरk. गुणन तालिका को फ़ानो आरेख से किन्हीं तीन बिंदुओं को जोड़ने वाली सीधी रेखा या केंद्र में वृत्त का अनुसरण करके तीरों द्वारा दिए गए चिह्न के साथ पुनर्प्राप्त किया जाता है। उदाहरण के लिए, गुणन की पहली पंक्ति जिसके परिणामस्वरूप e आता है1 #निर्देशांक में अभिव्यक्ति ई से जुड़े तीन पथों का अनुसरण करके प्राप्त की जाती है1 निचले फ़ैनो आरेख में: वृत्ताकार पथ e2 × और4, विकर्ण पथ ई3 × और7, और किनारे का रास्ता ई6 × और1 = और5 #परिणाम_के_परिभाषित_गुणों का उपयोग करके इस प्रकार पुनर्व्यवस्थित किया गया:

या

आरेख से सीधे इस नियम के साथ प्राप्त किया जाता है कि एक सीधी रेखा पर कोई भी दो इकाई सदिश उस सीधी रेखा पर तीसरी इकाई सदिश से गुणा करके तीरों के अनुसार संकेतों के साथ जुड़े होते हैं (क्रमपरिवर्तन का संकेत जो इकाई सदिश को आदेश देता है)।

यह देखा जा सकता है कि दोनों गुणन नियम केवल इकाई सदिश का नाम बदलकर और केंद्र इकाई सदिश की भावना को बदलकर एक ही फ़ानो आरेख का पालन करते हैं। आधार के सभी संभावित क्रमपरिवर्तनों को ध्यान में रखते हुए 480 गुणन सारणी और इस तरह 480 क्रॉस गुणनफल हैं।[13]


ज्यामितीय बीजगणित का उपयोग करना

गुणनफल की गणना ज्यामितीय बीजगणित का उपयोग करके भी की जा सकती है। गुणनफल बाहरी गुणनफल से शुरू होता है, दो सदिशों का एक द्विसदिश मान गुणनफल:

यह द्विरेखीय है, वैकल्पिक है, इसमें वांछित परिमाण है, लेकिन सदिश मान नहीं है। सदिश, और इसलिए क्रॉस गुणनफल, त्रिसदिश के साथ इस बायसदिश के गुणनफल से आता है। स्केल फ़ैक्टर तक तीन आकारों में केवल एक त्रि-सदिश, स्पेस का स्यूडोस्केलर और उपरोक्त बाइसदिश का एक गुणनफल होता है और दो यूनिट त्रि-सदिश में से एक सदिश परिणाम देता है, बाइसदिश का हॉज दोहरे

एक समान गणना सप्त आकारों में की जाती है, सिवाय इसके कि त्रि-सदिश एक 35-आकारीय स्थान बनाते हैं, ऐसे कई त्रि-सदिश हैं जिनका उपयोग किया जा सकता है, हालांकि कोई भी त्रि-सदिश ऐसा नहीं करेगा। त्रि-सदिश जो उपरोक्त समन्वय परिवर्तन के समान गुणनफल देता है

क्रॉस गुणनफल देने के लिए इसे बाहरी गुणनफल के साथ जोड़ा जाता है

कहाँ ज्यामितीय बीजगणित#ज्यामितीय बीजगणित से आंतरिक और बाहरी गुणनफल ऑपरेटर का विस्तार है।[8][14]

अष्टकोणों से संबंध

जिस तरह 3-आकारीय क्रॉस गुणनफल को चतुर्भुज के संदर्भ में व्यक्त किया जा सकता है, उसी तरह 7-आकारीय क्रॉस गुणनफल को ऑक्टोनियन के संदर्भ में व्यक्त किया जा सकता है। समरूपता करने के बाद काल्पनिक अष्टकोणों के साथ (वास्तविक रेखा का ओर्थोगोनल पूरक)। ), क्रॉस गुणनफल ऑक्टोनियन गुणन के संदर्भ में दिया गया है

इसके विपरीत, मान लीजिए कि वी एक दिए गए क्रॉस गुणनफल के साथ 7-आकारीय यूक्लिडियन स्थान है। फिर कोई द्विरेखीय गुणन को परिभाषित कर सकता है निम्नलिखित नुसार:

अंतरिक्ष इसके साथ ही गुणन अष्टकोणों के समरूपी हो जाता है।[15] क्रॉस गुणनफल केवल तीन और सप्त आकारों में मौजूद होता है क्योंकि कोई हमेशा ऊपर बताए अनुसार एक उच्च आयाम के स्थान पर गुणन को परिभाषित कर सकता है, और इस स्थान को एक मानक विभाजन बीजगणित के रूप में दिखाया जा सकता है। हर्विट्ज़ के प्रमेय (मानक विभाजन बीजगणित) के अनुसार|हर्विट्ज़ के प्रमेय के अनुसार ऐसे बीजगणित केवल एक, दो, चार और आठ आकारों में मौजूद होते हैं, इसलिए क्रॉस गुणनफल शून्य, एक, तीन या सप्त आकारों में होना चाहिए। शून्य और एक आयाम में गुणनफल तुच्छ हैं, इसलिए गैर-तुच्छ क्रॉस गुणनफल केवल तीन और सप्त आकारों में मौजूद हैं।[16][17] जैकोबी समरूपता को संतुष्ट करने में 7-आयाम क्रॉस गुणनफल की विफलता ऑक्टोनियन की गैर-सहयोगिता के कारण है। वास्तव में,

जहां [x, y, z] सहयोगी है।

रोटेशन

तीन आकारों में क्रॉस गुणनफल रोटेशन समूह, SO(3) की कार्रवाई के तहत अपरिवर्तनीय है, इसलिए घुमाए जाने के बाद x और y का क्रॉस गुणनफल की छवि है x × y रोटेशन के तहत. लेकिन यह अपरिवर्तनीयता सप्त आकारों में सत्य नहीं है; अर्थात्, सप्त आकारों में घूर्णन के समूह, समकोण समूह|SO(7) के तहत क्रॉस गुणनफल अपरिवर्तनीय नहीं है। इसके बजाय यह असाधारण लाई समूह G2 (गणित)|G के अंतर्गत अपरिवर्तनीय है2, SO(7) का एक उपसमूह।[8][15]


सामान्यीकरण

गैर-शून्य बाइनरी क्रॉस गुणनफल केवल तीन और सप्त आकारों में मौजूद हैं। इस प्रतिबंध को हटाने पर आगे के गुणनफल संभव हैं कि यह एक द्विआधारी गुणनफल होना चाहिए।[18][19] हमें प्रत्येक निविष्ट सदिश के लिए गुणनफल को बहु-रेखीय, वैकल्पिक ऑपरेटर, सदिश-मान और समकोण होना चाहिए।i. ऑर्थोगोनैलिटी आवश्यकता का तात्पर्य है कि n आकारों में, इससे अधिक नहीं n − 1 सदिश का उपयोग किया जा सकता है। गुणनफल का परिमाण किनारों के रूप में सदिश के साथ पैरेललेपिप्ड#पैरेललोटोप के आयतन के बराबर होना चाहिए, जिसकी गणना ग्रामियन मैट्रिक्स#ग्राम निर्धारक का उपयोग करके की जा सकती है। शर्तें हैं

  • रूढ़िवादिता:
    के लिए .
  • ग्राम निर्धारक:

ग्राम निर्धारक एक के साथ समांतर चतुर्भुज का वर्ग आयतन है1, ..., एk किनारों के रूप में.

इन शर्तों के साथ एक गैर-तुच्छ क्रॉस गुणनफल केवल मौजूद है:

  • तीन और सप्त आकारों में एक द्विआधारी गुणनफल के रूप में
  • n ≥ 3 आकारों में n - 1 सदिश के गुणनफल के रूप में, सदिश के बाहरी गुणनफल का हॉज डुअल होना
  • आठ आकारों में तीन सदिश के गुणनफल के रूप में

आठ आकारों में तीन सदिशों के गुणनफल का एक संस्करण दिया गया है

जहां v वही ​​त्रि-सदिश है जिसका उपयोग सप्त आकारों में किया जाता है, फिर से बायां संकुचन है, और w = −ve12...7 एक 4-सदिश है.

तुच्छ गुणनफल भी हैं. परिभाषित गुणों के #परिणाम के रूप में, एक द्विआधारी गुणनफल केवल 7, 3, 1 और 0 आकारों में मौजूद होता है, अंतिम दो समान रूप से शून्य होते हैं। एक और तुच्छ 'गुणनफल' सम आकारों में उत्पन्न होता है, जो एक एकल सदिश लेता है और एक उपयुक्त बायसदिश के साथ बाएं संकुचन के माध्यम से उसी परिमाण समकोण का एक सदिश उत्पन्न करता है। दो आकारों में यह एक समकोण से घूमना है।

एक और सामान्यीकरण के रूप में, हम बहुरेखीयता और परिमाण की आवश्यकताओं को ढीला कर सकते हैं, और एक सामान्य निरंतर कार्य पर विचार कर सकते हैं (कहाँ है यूक्लिडियन आंतरिक गुणनफल से संपन्न और ) जो केवल निम्नलिखित दो गुणों को संतुष्ट करने के लिए आवश्यक है:

  1. क्रॉस गुणनफल हमेशा सभी निविष्ट सदिश के लिए समकोण होता है।
  2. यदि निविष्ट सदिश रैखिक रूप से स्वतंत्र हैं, तो क्रॉस गुणनफल गैर-शून्य है।

इन आवश्यकताओं के तहत, क्रॉस गुणनफल केवल (I) के लिए मौजूद है , (द्वितीय) के लिए , (III) के लिए , और (IV) किसी के लिए .[1]


यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 WS Massey (1983). "Cross products of vectors in higher dimensional Euclidean spaces". The American Mathematical Monthly. Mathematical Association of America. 90 (10): 697–701. doi:10.2307/2323537. JSTOR 2323537.
  2. 2.0 2.1 WS Massey (1983). "Cross products of vectors in higher dimensional Euclidean spaces". The American Mathematical Monthly. 90 (10): 697–701. doi:10.2307/2323537. JSTOR 2323537. If one requires only three basic properties of the cross product ... it turns out that a cross product of vectors exists only in 3-dimensional and 7-dimensional Euclidean space.
  3. G Gentili, C Stoppato, DC Struppa and F Vlacci (2009). "Recent developments for regular functions of a hypercomplex variable". In Irene Sabadini; M Shapiro; F Sommen (eds.). हाइपरकॉम्प्लेक्स विश्लेषण (Conference on quaternionic and Clifford analysis; proceedings ed.). Birkhäuser. p. 168. ISBN 978-3-7643-9892-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. 4.0 4.1 Lev Vasilʹevitch Sabinin; Larissa Sbitneva; I. P. Shestakov (2006). "§17.2 Octonion algebra and its regular bimodule representation". Non-associative algebra and its applications. CRC Press. p. 235. ISBN 0-8247-2669-3.
  5. 5.0 5.1 5.2 Rafał Abłamowicz; Pertti Lounesto; Josep M. Parra (1996). "§ Four octonionic basis numberings". Clifford algebras with numeric and symbolic computations. Birkhäuser. p. 202. ISBN 0-8176-3907-1.
  6. Mappings are restricted to be bilinear by (Massey 1993) and Robert B Brown & Alfred Gray (1967). "Vector cross products". Commentarii Mathematici Helvetici. Birkhäuser Basel. 42 (1/December): 222–236. doi:10.1007/BF02564418. S2CID 121135913..
  7. Francis Begnaud Hildebrand (1992). अनुप्रयुक्त गणित के तरीके (Reprint of Prentice-Hall 1965 2nd ed.). Courier Dover Publications. p. 24. ISBN 0-486-67002-3.
  8. 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lounesto, pp. 96–97
  9. Kendall, M. G. (2004). A Course in the Geometry of N Dimensions. Courier Dover Publications. p. 19. ISBN 0-486-43927-5.
  10. 10.0 10.1 Z.K. Silagadze (2002). "Multi-dimensional vector product". Journal of Physics A: Mathematical and General. 35 (23): 4949–4953. arXiv:math.RA/0204357. Bibcode:2002JPhA...35.4949S. doi:10.1088/0305-4470/35/23/310. S2CID 119165783.
  11. Nathan Jacobson (2009). Basic algebra I (Reprint of Freeman 1974 2nd ed.). Dover Publications. pp. 417–427. ISBN 978-0-486-47189-1.
  12. तालिकाओं और इन तालिकाओं से फ़ानो विमान के कनेक्शन की आगे की चर्चा यहां पाई गई है: Tony Smith. "ऑक्टोनियन उत्पाद और जाली". Retrieved 2018-05-12.
  13. 13.0 13.1 Jörg Schray; Corinne A. Manogue (1996). "Octonionic representations of Clifford algebras and triality". Foundations of Physics. 26 (1/January): 17–70. arXiv:hep-th/9407179. Bibcode:1996FoPh...26...17S. doi:10.1007/BF02058887. S2CID 119604596. Available as ArXive preprint Figure 1 is located here.
  14. Bertfried Fauser (2004). "§18.4.2 Contractions". In Pertti Lounesto; Rafał Abłamowicz (eds.). क्लिफ़ोर्ड बीजगणित: गणित, भौतिकी और इंजीनियरिंग के लिए अनुप्रयोग. Birkhäuser. pp. 292 ff. ISBN 0-8176-3525-4.
  15. 15.0 15.1 John C. Baez (2002). "The Octonions" (PDF). Bull. Amer. Math. Soc. 39 (2): 145–205. arXiv:math/0105155. doi:10.1090/s0273-0979-01-00934-x. S2CID 586512. Archived from the original (PDF) on 2010-07-07.
  16. Elduque, Alberto (2004). "Vector cross products" (PDF). {{cite journal}}: Cite journal requires |journal= (help)
  17. Darpö, Erik (2009). "Vector product algebras". Bulletin of the London Mathematical Society. 41 (5): 898–902. arXiv:0810.5464. doi:10.1112/blms/bdp066. S2CID 122615967. See also: "Real vector product algebras". CiteSeerX 10.1.1.66.4. {{cite journal}}: Cite journal requires |journal= (help)
  18. लुनेस्टा, §7.5: के वैक्टर का क्रॉस उत्पाद , पी। 98
  19. Jean H. Gallier (2001). "Problem 7.10 (2)". Geometric methods and applications: for computer science and engineering. Springer. p. 244. ISBN 0-387-95044-3.


संदर्भ