क्वासिपरियोडिक फलन: Difference between revisions

From Vigyanwiki
(Weierstrass zeta function,)
No edit summary
Line 2: Line 2:
{{distinguish|लगभग आवधिक कार्य|अर्ध-आवधिक दोलन
{{distinguish|लगभग आवधिक कार्य|अर्ध-आवधिक दोलन
}}
}}
{{More citations needed|date=January 2023}}
गणित में, अर्ध-अवधि फलन (क्वासिपरियोडिक फ़ंक्शन) एक प्रकार का फलन होता है जिसमें एक निश्चित समय-समय पर फलन की समानता होती है। <ref>{{Cite book |last=Mitropolsky |first=Yu A. |url=https://www.worldcat.org/oclc/840309575 |title=आवधिक और क्वासिपरियोडिक गुणांक के साथ विकास समीकरणों की प्रणाली|date=1993 |publisher=Springer Netherlands |others=A. M. Samoilenko, D. I. Martinyuk |isbn=978-94-011-2728-8 |location=Dordrecht |pages=108 |language=en |oclc=840309575}}</ref> फलन <math>f</math> अर्धकालिक के साथ अर्धकालिक है <math>\omega</math> अगर <math>f(z + \omega) = g(z,f(z))</math>, कहाँ <math>g</math> की तुलना में सरल कार्य है <math>f</math>. सरल होने का अर्थ अस्पष्ट है।     
गणित में, अर्ध-अवधि फलन (क्वासिपरियोडिक फ़ंक्शन) एक प्रकार का फलन होता है जिसमें एक निश्चित समय-समय पर फलन की समानता होती है। <ref>{{Cite book |last=Mitropolsky |first=Yu A. |url=https://www.worldcat.org/oclc/840309575 |title=आवधिक और क्वासिपरियोडिक गुणांक के साथ विकास समीकरणों की प्रणाली|date=1993 |publisher=Springer Netherlands |others=A. M. Samoilenko, D. I. Martinyuk |isbn=978-94-011-2728-8 |location=Dordrecht |pages=108 |language=en |oclc=840309575}}</ref> फलन <math>f</math> अर्धकालिक के साथ अर्धकालिक है <math>\omega</math> अगर <math>f(z + \omega) = g(z,f(z))</math>, कहाँ <math>g</math> की तुलना में सरल कार्य है <math>f</math>. सरल होने का अर्थ अस्पष्ट है।     


Line 40: Line 39:
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
==बाहरी संबंध==
==बाहरी संबंध==
*[https://web.archive.org/web/20070713223414/http://planetmath.org/encyclopedia/QuasiperiodicFunction.html Quasiperiodic function] at [[PlanetMath]]
*[https://web.archive.org/web/20070713223414/http://planetmath.org/encyclopedia/QuasiperiodicFunction.html Quasiperiodic function] at [[PlanetMath]]

Revision as of 10:52, 31 March 2023

गणित में, अर्ध-अवधि फलन (क्वासिपरियोडिक फ़ंक्शन) एक प्रकार का फलन होता है जिसमें एक निश्चित समय-समय पर फलन की समानता होती है। [1] फलन अर्धकालिक के साथ अर्धकालिक है अगर , कहाँ की तुलना में सरल कार्य है . सरल होने का अर्थ अस्पष्ट है।

फलन f(x)=x/+sin(x) समीकरण को संतुष्ट करता है f(x+2π)=f(x)+1, और इसलिए अंकगणितीय अर्धकालिक है।

एक साधारण कारक (कभी-कभी अंकगणित अर्धकालिक कहा जाता है) यदि फलन समीकरण का पालन करता है:

एक अन्य कारक (कभी-कभी ज्यामितीय अर्धकालिक कहा जाता है) है यदि फलन समीकरण का पालन करता है:

इसका एक उदाहरण थीटा फलन है, जहां

निश्चित रूप से दिखाता है यह अर्ध अवधि है ; यह अवधि एक के साथ आवधिक भी है। एक अन्य उदाहरण वीयरस्ट्रैस सिग्मा फलन द्वारा प्रदान किया गया है, जो दो स्वतंत्र अर्धकालिक में अर्धकालिक है, इसी वीयरस्ट्रैस इलिप्टिक फ़ंक्शंस की अवधि। वीयरस्ट्रैस ℘ फलन।

एक योज्य कार्यात्मक समीकरण के साथ कार्य

अर्धकालिक भी कहा जाता है। इसका एक उदाहरण वीयरस्ट्रास जीटा फंक्शन है, जहां

z-स्वतंत्र η के लिए जब ω संबंधित विअरस्ट्रास ℘ फलन की अवधि है।

विशेष मामले में जहां हम कहते हैं कि f आवधिक फलन है जिसकी अवधि ω अवधि जालक में है .

अर्धकालिक संकेत

श्रव्य (ऑडियो) प्रक्रमण के अर्थ में अर्धकालिक संकेत यहां परिभाषित अर्थ में अर्द्धकालिक कार्य नहीं हैं, बल्कि उनके पास लगभग आवधिक कार्यों की प्रकृति है और उस लेख से परामर्श किया जाना चाहिए। क्वैसिपरियोडिसिटी की अधिक अस्पष्ट और सामान्य धारणा का गणितीय अर्थ में अर्धकालिक कार्यों से भी कम संबंध है।

एक उपयोगी उदाहरण है फलन:

यदि अनुपात ए/बी तर्कसंगत है, तो इसकी एक वास्तविक अवधि होगी, लेकिन यदि ए/बी अपरिमेय है तो कोई वास्तविक अवधि नहीं है, लेकिन लगभग सटीक अवधियों का एक क्रम है।

यह भी देखें

संदर्भ

  1. Mitropolsky, Yu A. (1993). आवधिक और क्वासिपरियोडिक गुणांक के साथ विकास समीकरणों की प्रणाली (in English). A. M. Samoilenko, D. I. Martinyuk. Dordrecht: Springer Netherlands. p. 108. ISBN 978-94-011-2728-8. OCLC 840309575.

बाहरी संबंध