प्रीफ्रंटल कॉर्टेक्स बेसल गैन्ग्लिया वर्किंग मेमोरी: Difference between revisions

From Vigyanwiki
(Created page with "मस्तिष्काग्र की बाह्य परत बेसल गैन्ग्लिया [[ क्रियाशील स्मृति ]...")
 
No edit summary
Line 1: Line 1:
[[ मस्तिष्काग्र की बाह्य परत ]] [[बेसल गैन्ग्लिया]] [[ क्रियाशील स्मृति ]] (पीबीडब्लूएम) एक [[कलन विधि]] है जो प्रीफ्रंटल कॉर्टेक्स और बेसल गैन्ग्लिया में [[कंप्यूटर सिमुलेशन]] वर्किंग मेमोरी है।<ref name="paper">{{cite journal|url=http://psych.colorado.edu/~oreilly/pubs-abstr.html#OReillyFrank06|title=Making Working Memory Work: A Computational Model of Learning in the Frontal Cortex and Basal Ganglia|author1=O'Reilly, R.C|author2=Frank, M.J.|name-list-style=amp|year=2006|journal=Neural Computation|volume=18|issue=2|pages=283–328|pmid=16378516|doi=10.1162/089976606775093909|s2cid=8912485}}</ref>
[[ मस्तिष्काग्र की बाह्य परत |पेरफरेंटल कोर्टेक्स]] [[बेसल गैन्ग्लिया]] [[ क्रियाशील स्मृति |क्रियाशील मेमोरी]] (पीबीडब्लूएम) [[कलन विधि]] है जो प्रीफ्रंटल कॉर्टेक्स और बेसल गैन्ग्लिया में [[कंप्यूटर सिमुलेशन]] क्रियाशील मेमोरी है।<ref name="paper">{{cite journal|url=http://psych.colorado.edu/~oreilly/pubs-abstr.html#OReillyFrank06|title=Making Working Memory Work: A Computational Model of Learning in the Frontal Cortex and Basal Ganglia|author1=O'Reilly, R.C|author2=Frank, M.J.|name-list-style=amp|year=2006|journal=Neural Computation|volume=18|issue=2|pages=283–328|pmid=16378516|doi=10.1162/089976606775093909|s2cid=8912485}}</ref>
कार्यक्षमता में इसकी तुलना दीर्घकालिक अल्पकालिक मेमोरी (LSTM) से की जा सकती है, लेकिन यह जैविक रूप से अधिक व्याख्या योग्य है।<ref name="paper" /><ref name="aim">{{cite web|first=Nivash|last=Jeevanandam|date=2021-09-13
 
कार्यक्षमता में इसकी तुलना दीर्घकालिक अल्पकालिक मेमोरी (एलएसटीएम) से की जा सकती है, लेकिन यह जैविक रूप से अधिक व्याख्या के योग्य है।<ref name="paper" /><ref name="aim">{{cite web|first=Nivash|last=Jeevanandam|date=2021-09-13
|title=Underrated But Fascinating ML Concepts #5 – CST, PBWM, SARSA, & Sammon Mapping
|title=Underrated But Fascinating ML Concepts #5 – CST, PBWM, SARSA, & Sammon Mapping
|url=https://analyticsindiamag.com/underrated-but-fascinating-ml-concepts-5-cst-pbwm-sarsa-sammon-mapping/
|url=https://analyticsindiamag.com/underrated-but-fascinating-ml-concepts-5-cst-pbwm-sarsa-sammon-mapping/
Line 6: Line 7:
|website=Analytics India Magazine
|website=Analytics India Magazine
|language=en}}</ref>
|language=en}}</ref>
यह प्रीफ्रंटल कॉर्टेक्स और बेसल गैन्ग्लिया के जीव विज्ञान के आधार पर प्रीफ्रंटल कॉर्टेक्स वर्किंग-मेमोरी अपडेटिंग सिस्टम को प्रशिक्षित करने के लिए [[पीवीएलवी]] मॉडल का उपयोग करता है।<ref name="emergent">{{cite web|url=http://grey.colorado.edu/emergent/index.php/Leabra_PBWM|title=लीब्रा पीबीडब्ल्यूएम|publisher=CCNLab}}</ref>
 
इसका उपयोग [[लीब्रा]] फ्रेमवर्क के हिस्से के रूप में किया जाता है और इसे 2019 में इमर्जेंट (सॉफ्टवेयर) में लागू किया गया था।
यह प्रीफ्रंटल कॉर्टेक्स और बेसल गैन्ग्लिया के जीव विज्ञान के आधार पर प्रीफ्रंटल कॉर्टेक्स क्रियाशील-मेमोरी अपडेटिंग सिस्टम को प्रशिक्षित करने के लिए [[पीवीएलवी]] मॉडल का उपयोग करता है।<ref name="emergent">{{cite web|url=http://grey.colorado.edu/emergent/index.php/Leabra_PBWM|title=लीब्रा पीबीडब्ल्यूएम|publisher=CCNLab}}</ref>
 
इसका उपयोग [[लीब्रा]] फ्रेमवर्क के भाग के रूप में किया जाता है और इसे 2019 में इमर्जेंट (सॉफ्टवेयर) में क्रियान्वित किया गया था।


==सार==
==सार==

Revision as of 10:03, 12 July 2023

पेरफरेंटल कोर्टेक्स बेसल गैन्ग्लिया क्रियाशील मेमोरी (पीबीडब्लूएम) कलन विधि है जो प्रीफ्रंटल कॉर्टेक्स और बेसल गैन्ग्लिया में कंप्यूटर सिमुलेशन क्रियाशील मेमोरी है।[1]

कार्यक्षमता में इसकी तुलना दीर्घकालिक अल्पकालिक मेमोरी (एलएसटीएम) से की जा सकती है, लेकिन यह जैविक रूप से अधिक व्याख्या के योग्य है।[1][2]

यह प्रीफ्रंटल कॉर्टेक्स और बेसल गैन्ग्लिया के जीव विज्ञान के आधार पर प्रीफ्रंटल कॉर्टेक्स क्रियाशील-मेमोरी अपडेटिंग सिस्टम को प्रशिक्षित करने के लिए पीवीएलवी मॉडल का उपयोग करता है।[3]

इसका उपयोग लीब्रा फ्रेमवर्क के भाग के रूप में किया जाता है और इसे 2019 में इमर्जेंट (सॉफ्टवेयर) में क्रियान्वित किया गया था।

सार

लंबे समय से यह माना जाता रहा है कि प्रीफ्रंटल कॉर्टेक्स कार्यशील मेमोरी (प्रसंस्करण के लिए ऑनलाइन जानकारी रखना) और कार्यकारी कार्यों (कार्यशील मेमोरी में हेरफेर करने और प्रसंस्करण करने का तरीका तय करना) दोनों का समर्थन करता है। हालाँकि कार्यशील मेमोरी के कई कम्प्यूटेशनल मॉडल विकसित किए गए हैं, कार्यकारी फ़ंक्शन का यंत्रवत आधार मायावी बना हुआ है।

पीबीडब्ल्यूएम रणनीतिक, कार्य-उपयुक्त तरीके से खुद को और मस्तिष्क के अन्य क्षेत्रों को नियंत्रित करने के लिए प्रीफ्रंटल कॉर्टेक्स का एक कम्प्यूटेशनल मॉडल है। ये सीखने के तंत्र मिडब्रेन, बेसल गैन्ग्लिया और एमिग्डाला में सबकोर्टिकल संरचनाओं पर आधारित हैं, जो एक साथ एक अभिनेता/आलोचक वास्तुकला का निर्माण करते हैं। आलोचक प्रणाली सीखती है कि कौन से प्रीफ्रंटल प्रतिनिधित्व कार्य-प्रासंगिक हैं और अभिनेता को प्रशिक्षित करते हैं, जो बदले में कार्यशील मेमोरी अपडेट को नियंत्रित करने के लिए एक गतिशील गेटिंग तंत्र प्रदान करता है। कम्प्यूटेशनल रूप से, शिक्षण तंत्र को अस्थायी और संरचनात्मक क्रेडिट असाइनमेंट समस्याओं को एक साथ हल करने के लिए डिज़ाइन किया गया है।

मॉडल का प्रदर्शन चुनौतीपूर्ण 1-2-AX कार्यशील मेमोरी कार्य और अन्य बेंचमार्क कार्यशील मेमोरी कार्यों पर मानक बैकप्रॉपैगेशन-आधारित टेम्पोरल लर्निंग तंत्र के साथ अनुकूल रूप से तुलना करता है।[1][third-party source needed]

मॉडल

सबसे पहले, प्रीफ्रंटल कॉर्टेक्स और स्ट्रिएटम परतों में कई अलग-अलग धारियां (इकाइयों के समूह) होती हैं। प्रत्येक स्ट्राइप को स्वतंत्र रूप से अपडेट किया जा सकता है, जैसे कि यह सिस्टम एक ही समय में कई अलग-अलग चीजों को याद रख सकता है, प्रत्येक मेमोरी को अपडेट और बनाए रखने के लिए एक अलग अपडेटिंग नीति के साथ। मेमोरी का सक्रिय रखरखाव प्रीफ्रंटल कॉर्टेक्स (पीएफसी) में होता है, और अद्यतन संकेत (और अधिक सामान्यतः अद्यतन नीति) स्ट्रिएटम इकाइयों (बेसल गैन्ग्लिया इकाइयों का एक उपसमूह) से आते हैं।[3]

पीवीएलवी बेसल गैन्ग्लिया में गतिशील गेटिंग प्रणाली को प्रशिक्षित करने के लिए सुदृढीकरण सीखने के संकेत प्रदान करता है।

संवेदी इनपुट और मोटर आउटपुट

संवेदी इनपुट पश्च प्रांतस्था से जुड़ा होता है जो मोटर आउटपुट से जुड़ा होता है। संवेदी इनपुट पीवीएलवी प्रणाली से भी जुड़ा हुआ है।

पश्च प्रांतस्था

पश्च कॉर्टेक्स इनपुट/आउटपुट मैपिंग की छिपी हुई परतों का निर्माण करता है। इस इनपुट/आउटपुट मैपिंग को प्रासंगिक बनाने के लिए पीएफसी पोस्टीरियर कॉर्टेक्स से जुड़ा हुआ है।

पीएफसी

पीएफसी (आउटपुट गेटिंग के लिए) में प्रत्येक पट्टी के लिए इनपुट इकाइयों का एक-से-एक स्थानीय प्रतिनिधित्व होता है। इस प्रकार, आप इन पीएफसी अभ्यावेदनों को देख सकते हैं और सीधे देख सकते हैं कि नेटवर्क क्या बनाए रख रहा है। पीएफसी कार्य करने के लिए आवश्यक कार्यशील मेमोरी को बनाए रखता है।

स्ट्रेटम

यह गतिशील गेटिंग प्रणाली है जो बेसल गैन्ग्लिया की स्ट्रिएटम इकाइयों का प्रतिनिधित्व करती है। एक पट्टी के भीतर प्रत्येक सम-सूचकांक इकाई Go का प्रतिनिधित्व करती है, जबकि विषम-सूचकांक इकाइयाँ NoGo का प्रतिनिधित्व करती हैं। Go इकाइयाँ PFC को अद्यतन करने का कारण बनती हैं, जबकि NoGo इकाइयाँ PFC को उसके मौजूदा मेमोरी प्रतिनिधित्व को बनाए रखने का कारण बनती हैं।

प्रत्येक पट्टी के लिए इकाइयों के समूह हैं।

इमर्जेंट (सॉफ्टवेयर) में पीबीडब्ल्यूएम मॉडल में, मैट्रिक्स स्ट्रिएटम का प्रतिनिधित्व करते हैं।

पीवीएलवी

ये सभी परतें पीवीएलवी प्रणाली का हिस्सा हैं। पीवीएलवी प्रणाली बेसल गैन्ग्लिया (बीजी) के डोपामिनर्जिक मॉड्यूलेशन को नियंत्रित करती है। इस प्रकार, बीजी/पीवीएलवी एक अभिनेता-आलोचक वास्तुकला का निर्माण करता है जहां पीवीएलवी प्रणाली सीखती है कि कब अपडेट करना है।[citation needed]

एसएनआरथल

SNrThal काला पदार्थ पार्स रेटिकुलाटा (SNr) और चेतक के संबंधित क्षेत्र का प्रतिनिधित्व करता है, जो किसी दिए गए स्ट्राइप के भीतर Go/NoGo इकाइयों के बीच प्रतिस्पर्धा पैदा करता है और Winner-take-all (कंप्यूटिंग)|k-winners-take का उपयोग करके प्रतिस्पर्धा में मध्यस्थता करता है। -सभी गतिशीलता. यदि किसी दिए गए स्ट्राइप में अधिक समग्र गो गतिविधि है, तो संबंधित एसएनआरथल इकाई सक्रिय हो जाती है, और यह पीएफसी में अपडेट को संचालित करती है। प्रत्येक पट्टी के लिए, SNrThal में एक इकाई होती है।[citation needed]

वीटीए और एसएनसी

उदर तेग्मेंतल क्षेत्र (वीटीए) और सबस्टैंटिया नाइग्रा पार्स कॉम्पेक्टा (एसएनसी) डोपामाइन परत का हिस्सा हैं। यह परत मिडब्रेन डोपामाइन न्यूरॉन्स को मॉडल करती है। वे बेसल गैन्ग्लिया के डोपामिनर्जिक मॉड्यूलेशन को नियंत्रित करते हैं।[citation needed]

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 O'Reilly, R.C & Frank, M.J. (2006). "Making Working Memory Work: A Computational Model of Learning in the Frontal Cortex and Basal Ganglia". Neural Computation. 18 (2): 283–328. doi:10.1162/089976606775093909. PMID 16378516. S2CID 8912485.
  2. Jeevanandam, Nivash (2021-09-13). "Underrated But Fascinating ML Concepts #5 – CST, PBWM, SARSA, & Sammon Mapping". Analytics India Magazine (in English). Retrieved 2021-12-04.
  3. 3.0 3.1 "लीब्रा पीबीडब्ल्यूएम". CCNLab.