वॉल्श फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:Natural and sequency ordered Walsh 16.svg|thumb|480px|क्रम 16 का प्राकृतिक क्रमबद्ध और अनुक्रम क्रमबद्ध [[हैडामर्ड मैट्रिक्स]]।<br>विशेष रूप से पूर्व को आमतौर पर [[वॉल्श मैट्रिक्स]] कहा जाता है।<br>दोनों में पंक्तियों (और स्तंभों) के रूप में क्रम 16 के 16 वॉल्श फ़ंक्शन सम्मिलित हैं।<br>सही मैट्रिक्स में, प्रति पंक्ति चिह्न परिवर्तन की संख्या लगातार है।]]गणित में, विशेष रूप से [[हार्मोनिक विश्लेषण]] में, '''वॉल्श फ़ंक्शंस''' का [[पूर्ण ऑर्थोगोनल प्रणाली]] बनाते हैं जिसका उपयोग किसी भी असतत फ़ंक्शन का प्रतिनिधित्व करने के लिए किया जा सकता है- जैसे त्रिकोणमितीय फ़ंक्शंस का उपयोग [[फूरियर विश्लेषण]] में किसी भी निरंतर फ़ंक्शन का प्रतिनिधित्व करने के लिए किया जा सकता है।<ref>{{harvnb|Walsh|1923}}.</ref> इस प्रकार उन्हें [[इकाई अंतराल]] पर त्रिकोणमितीय कार्यों की निरंतर, एनालॉग प्रणाली के असतत, डिजिटल समकक्ष के रूप में देखा जा सकता है। किंतु साइन और कोसाइन फ़ंक्शंस के विपरीत, जो निरंतर फ़ंक्शन हैं, वॉल्श फ़ंक्शंस भागों में स्थिर होते हैं। वे डायडिक परिमेय द्वारा परिभाषित उप-अंतराल पर केवल -1 और +1 मान लेते हैं।
[[File:Natural and sequency ordered Walsh 16.svg|thumb|480px|प्राकृतिक क्रमबद्ध और अनुक्रम क्रम 16 का [[हैडामर्ड मैट्रिक्स]]।<br>विशेष रूप से पूर्व को सामान्यतः [[वॉल्श मैट्रिक्स]] कहा जाता है।<br>दोनों में पंक्तियों (और स्तंभों) के रूप में क्रम 16 के 16 वॉल्श फ़ंक्शन सम्मिलित हैं।<br>मैट्रिक्स में, प्रति पंक्ति चिह्न परिवर्तन की संख्या है।]]गणित में, विशेष रूप से [[हार्मोनिक विश्लेषण]] में, '''वॉल्श फ़ंक्शंस''' का [[पूर्ण ऑर्थोगोनल प्रणाली]] बनाते हैं जिसका उपयोग किसी भी असतत फ़ंक्शन का प्रतिनिधित्व करने के लिए किया जा सकता है- जैसे त्रिकोणमितीय फ़ंक्शंस का उपयोग [[फूरियर विश्लेषण]] में किसी भी निरंतर फ़ंक्शन का प्रतिनिधित्व करने के लिए किया जा सकता है।<ref>{{harvnb|Walsh|1923}}.</ref> इस प्रकार उन्हें [[इकाई अंतराल]] पर त्रिकोणमितीय कार्यों की निरंतर, एनालॉग प्रणाली के असतत, डिजिटल समकक्ष के रूप में देखा जा सकता है। किंतु साइन और कोसाइन फ़ंक्शंस के विपरीत, जो निरंतर फ़ंक्शन हैं, वॉल्श फ़ंक्शंस भागों में स्थिर होते हैं। वे डायडिक परिमेय द्वारा परिभाषित उप-अंतराल पर केवल -1 और +1 मान लेते हैं।


वॉल्श कार्यों की प्रणाली को वॉल्श प्रणाली के रूप में जाना जाता है। यह ऑर्थोगोनल फ़ंक्शंस की रेडेमाकर प्रणाली का विस्तार है।<ref>{{harvnb|Fine|1949}}.</ref>
वॉल्श कार्यों की प्रणाली को वॉल्श प्रणाली के रूप में जाना जाता है। यह ऑर्थोगोनल फ़ंक्शंस की रेडेमाकर प्रणाली का विस्तार है।<ref>{{harvnb|Fine|1949}}.</ref>

Revision as of 20:02, 9 July 2023

प्राकृतिक क्रमबद्ध और अनुक्रम क्रम 16 का हैडामर्ड मैट्रिक्स
विशेष रूप से पूर्व को सामान्यतः वॉल्श मैट्रिक्स कहा जाता है।
दोनों में पंक्तियों (और स्तंभों) के रूप में क्रम 16 के 16 वॉल्श फ़ंक्शन सम्मिलित हैं।
मैट्रिक्स में, प्रति पंक्ति चिह्न परिवर्तन की संख्या है।

गणित में, विशेष रूप से हार्मोनिक विश्लेषण में, वॉल्श फ़ंक्शंस का पूर्ण ऑर्थोगोनल प्रणाली बनाते हैं जिसका उपयोग किसी भी असतत फ़ंक्शन का प्रतिनिधित्व करने के लिए किया जा सकता है- जैसे त्रिकोणमितीय फ़ंक्शंस का उपयोग फूरियर विश्लेषण में किसी भी निरंतर फ़ंक्शन का प्रतिनिधित्व करने के लिए किया जा सकता है।[1] इस प्रकार उन्हें इकाई अंतराल पर त्रिकोणमितीय कार्यों की निरंतर, एनालॉग प्रणाली के असतत, डिजिटल समकक्ष के रूप में देखा जा सकता है। किंतु साइन और कोसाइन फ़ंक्शंस के विपरीत, जो निरंतर फ़ंक्शन हैं, वॉल्श फ़ंक्शंस भागों में स्थिर होते हैं। वे डायडिक परिमेय द्वारा परिभाषित उप-अंतराल पर केवल -1 और +1 मान लेते हैं।

वॉल्श कार्यों की प्रणाली को वॉल्श प्रणाली के रूप में जाना जाता है। यह ऑर्थोगोनल फ़ंक्शंस की रेडेमाकर प्रणाली का विस्तार है।[2]

वॉल्श फ़ंक्शंस, वॉल्श प्रणाली, वॉल्श श्रृंखला,[3] और तीव्र वॉल्श-हैडमार्ड परिवर्तन सभी का नाम अमेरिकी गणितज्ञ जोसेफ एल. वॉल्श के नाम पर रखा गया है। डिजिटल सिग्नलों का विश्लेषण करते समय वे भौतिकी और इंजीनियरिंग में विभिन्न अनुप्रयोग पाते हैं।

ऐतिहासिक रूप से, वॉल्श फ़ंक्शंस के विभिन्न अंकों का उपयोग किया गया है; उनमें से कोई भी दूसरे से विशेष रूप से श्रेष्ठ नहीं है। यह लेख वॉल्श-पेली अंकन का उपयोग करता है।

परिभाषा

हम वॉल्श फ़ंक्शंस के अनुक्रम को से परिभाषित करते हैं, जो निम्नलिखित है:

मान लीजिये, किसी भी प्राकृत संख्या k और वास्तविक संख्या के लिए के लिए है:

से प्रारंभ करते हुए, k के बाइनरी प्रतिनिधित्व में jth बिट बनें, सबसे कम महत्वपूर्ण बिट के रूप में है।
के भिन्नात्मक बाइनरी प्रतिनिधित्व में jth बिट है , से प्रारंभ सबसे महत्वपूर्ण भिन्नात्मक बिट के रूप में है।

फिर, परिभाषा के अनुसार

विशेष रूप से, अंतराल पर प्रत्येक स्थान, चूँकि k के सभी बिट शून्य हैं।

नोटिस जो त्रुटिहीन रूप से रैडेमाकर प्रणाली rm है। इस प्रकार, रैडेमाकर प्रणाली वॉल्श प्रणाली की उपप्रणाली है। इसके अतिरिक्त, प्रत्येक वॉल्श फ़ंक्शन रैडेमाकर फ़ंक्शन का उत्पाद है:

वॉल्श फ़ंक्शंस और त्रिकोणमितीय फ़ंक्शंस के मध्य तुलना

वॉल्श फ़ंक्शंस और त्रिकोणमितीय फ़ंक्शंस दोनों प्रणालियाँ हैं जो फ़ंक्शंस का पूर्ण, लंबनात्मकता समुच्चय, हिल्बर्ट स्थान में ऑर्थोनॉर्मल आधार बनाती हैं। इकाई अंतराल पर वर्ग-अभिन्न कार्यों काउसकी तरंगिका या फ्रैंकलिन प्रणाली के विपरीत, दोनों बंधे हुए कार्यों की प्रणालियाँ हैं।

त्रिकोणमिति और वॉल्श दोनों प्रणालियाँ इकाई अंतराल से वास्तविक रेखा तक आवधिकता द्वारा प्राकृतिक विस्तार को स्वीकार करती हैं, इसके अतिरिक्त, इकाई अंतराल (फूरियर श्रृंखला) और वास्तविक रेखा (फूरियर रूपांतरण) पर दोनों फूरियर विश्लेषण में उनके डिजिटल समकक्षों को वॉल्श प्रणाली के माध्यम से परिभाषित किया गया है, वॉल्श श्रृंखला फूरियर श्रृंखला के अनुरूप है, और हेडमार्ड फूरियर ट्रांसफॉर्म के अनुरूप है।

गुण

वॉल्श प्रणाली क्रमविनिमेय गुणात्मक असतत समूह समरूपी है , कैंटर क्यूब का पोंट्रीगिन द्वंद्व है।

इसकी पहचान , और प्रत्येक एलिमेंट क्रम दो का है (अर्थात् स्व-प्रतिलोम)।

वॉल्श प्रणाली हिल्बर्ट अंतरिक्ष का ऑर्थोनोर्मलिटी आधार है ओर्थोनोर्मलिटी का अर्थ है:

,

और आधार होने का अर्थ है कि यदि, प्रत्येक के लिए , समुच्चय करते हैं तब

यह ज्ञात होता है कि प्रत्येक के लिए , श्रृंखला अभिसरित होती है लगभग सभी के लिए है।

वॉल्श प्रणाली (वॉल्श-पेली अंकन में) शॉडर आधार बनाती है ,   ध्यान दें कि, हार प्रणाली के विपरीत, और त्रिकोणमितीय प्रणाली के जैसे, यह आधार बिना नियम नहीं है, न ही यह प्रणाली शॉडर आधार है।

सामान्यीकरण

वॉल्श-वर्लेगर प्रणाली

मान लीजिये, हार माप और लेट से संपन्न कॉम्पैक्ट कैंटर क्यूब बनें इसके वर्णों का असतत समूह हो। घटक वॉल्श फ़ंक्शंस के साथ सरलता से पहचाने जाते हैं। अवश्य, पात्रों को परिभाषित किया गया है जबकि वॉल्श फ़ंक्शंस को इकाई अंतराल पर परिभाषित किया गया है, किंतु चूंकि इन माप स्थानों के मध्य मानक संभाव्यता स्थान उपस्थित है, इसलिए उन पर मापने योग्य कार्यों को आइसोमेट्री के माध्यम से पहचाना जाता है।

फिर मूलभूत प्रतिनिधित्व सिद्धांत वॉल्श प्रणाली की अवधारणा के निम्नलिखित व्यापक सामान्यीकरण का विचार देते है।

बनच स्थान के लिए मान लीजिये की दृढ़ता से निरंतर, समान रूप से बाध्य फंक्शन है। X पर प्रत्येक के लिए , इसके आइजेनस्पेस पर विचार करें तब X आइजेनस्पेस का बंद रैखिक विस्तार है: मान लें कि प्रत्येक ईजेनस्पेस एक-आयामी है और एलिमेंट चयन करें ऐसा है कि फिर प्रणाली , या वर्णों के वॉल्श-पेली अंकन में समान प्रणाली को क्रिया से संबंधित सामान्यीकृत वॉल्श प्रणाली कहा जाता है: . शास्त्रीय वॉल्श प्रणाली विशेष मामला बन जाती है, अर्थात्, के लिए

जहाँ अतिरिक्त मॉड्यूलो 2 है।

1990 दशक के प्रारंभ में, सर्ज फर्लेगर और फ्योडोर सुकोचेव ने दिखाया कि बानाच स्पेस (तथाकथित यूएमडी स्पेस) के व्यापक वर्ग में सामान्यीकृत वॉल्श प्रणाली में शास्त्रीय के समान कई गुण होते हैं:[4]वे शॉडर आधार बनाते हैं और अंतरिक्ष में समान परिमित आयामी अपघटन[5]यादृच्छिक बिना नियम अभिसरण का गुण है।[6]सामान्यीकृत वॉल्श प्रणाली का महत्वपूर्ण उदाहरण हाइपरफिनिट प्रकार II कारक से जुड़े गैर-कम्यूटेटिव Lp स्थानों में फर्मियन वॉल्श प्रणाली है।[7]

फर्मियन वॉल्श प्रणाली

फ़र्मियन वॉल्श प्रणाली गैर-कम्यूटेटिव, या शास्त्रीय वॉल्श प्रणाली का "क्वांटम" एनालॉग है। पश्चात के विपरीत, इसमें ऑपरेटर होते हैं, फ़ंक्शंस नहीं होते हैं। फिर भी, दोनों प्रणालियाँ कई महत्वपूर्ण गुण होते हैं, उदाहरण के लिए, दोनों संबंधित हिल्बर्ट स्थान में ऑर्थोनॉर्मल आधार बनाते हैं, या संबंधित सममित स्थानों में शॉडर आधार बनाते हैं। फ़र्मियन वॉल्श प्रणाली के एलिमेंट्स को वॉल्श ऑपरेटर कहा जाता है।

प्रणाली के नाम में फर्मिअन शब्द को इस तथ्य से समझाया गया है कि आवरण ऑपरेटर स्थान, तथाकथित हाइपरफ़िनिट प्रकार II कारक , को भिन्न-भिन्न स्पिन की अनगिनत अनंत संख्या की प्रणाली के अवलोकन योग्य स्थान के रूप में फर्मियन्स देखा जा सकता है। प्रत्येक रैडेमाकर फ़ंक्शन ऑपरेटर केवल विशेष फ़र्मियन समन्वय पर कार्य करता है, और वहां यह पॉल के मैट्रिक्स है। इसकी पहचान किसी अक्ष के साथ उस फ़र्मिअन के अवलोकनीय मापने वाले स्पिन घटक से की जा सकती है। इस प्रकार, वॉल्श ऑपरेटर फ़र्मियन के उपसमूह के स्पिन को मापता है, प्रत्येक अपनी धुरी पर है।

विलेंकिन प्रणाली

क्रमिक पूर्णांकों के साथ और उत्पाद टोपोलॉजी और सामान्यीकृत हार माप से संपन्न परिभाषित और प्रत्येक वास्तविक संख्या से जोड़ा जा सकता है:

यह पत्राचार मध्य में मॉड्यूल शून्य समरूपता है और इकाई अंतराल यह पैरामीटर को भी परिभाषित करता है जो टोपोलॉजी उत्पन्न करता है के लिए , मान लीजिये जहाँ

समुच्चय सामान्यीकृत रेडमेकर प्रणाली कहलाती है। विलेनकिन प्रणाली समूह (जटिल-मूल्यवान) वर्णों का , जो सभी परिमित उत्पाद हैं प्रत्येक गैर-नकारात्मक पूर्णांक के लिए विशेष क्रम है ऐसा है कि और

तब जहाँ

विशेषकर, यदि , तब कैंटर समूह है और (वास्तविक-मूल्यवान) वॉल्श-पेली प्रणाली है।

विलेनकिन प्रणाली पूर्ण ऑर्थोनॉर्मल प्रणाली है और शॉडर आधार ,   बनाता है।[8]

बाइनरी सतह

रोमनुके ने दिखाया कि वॉल्श फ़ंक्शंस को दो चर के फ़ंक्शन की विशेष स्तिथि में बाइनरी सतहों पर सामान्यीकृत किया जा सकता है।[9] ऑर्थोनॉर्मल बाइनरी फ़ंक्शंस के आठ वॉल्श-जैसे आधार भी उपस्थित हैं,[10] जिसकी संरचना अनियमित है (वॉल्श कार्यों की संरचना के विपरीत)। इन आठ आधारों को सतहों पर भी सामान्यीकृत किया जाता है (दो चर के कार्य की स्तिथि में)। यह सिद्ध हो गया है कि जब उचित गुणांकों के साथ भारित किया जाता है, तो भाग-निरंतर कार्यों को नौ आधारों (वाल्श कार्यों के आधार सहित) में से प्रत्येक के भीतर बाइनरी कार्यों के सीमित योग के रूप में दर्शाया जा सकता है।[11]

अरेखीय चरण विस्तार

असतत वॉल्श-हैडामर्ड परिवर्तन के अरेखीय चरण विस्तार विकसित किए गए। यह दिखाया गया कि उत्तम क्रॉस-सहसंबंध गुणों के साथ नॉनलाइनियर चरण आधार कार्य कोड डिवीजन मल्टीपल एक्सेस (सीडीएमए) संचार में पारंपरिक वॉल्श कोड से अधिक उत्तम प्रदर्शन करते हैं।[12]

अनुप्रयोग

वॉल्श फ़ंक्शंस के अनुप्रयोग वहां पाए जा सकते हैं जहां डिजिटल प्रतिनिधित्व का उपयोग किया जाता है, जिसमें वाक् पहचान, चिकित्सा और जैविक छवि प्रसंस्करण और डिजिटल होलोग्राफी सम्मिलित हैं।

उदाहरण के लिए, डिजिटल अर्ध-मोंटे कार्लो विधियों के विश्लेषण में तीव्र वॉल्श-हैडमार्ड ट्रांसफॉर्म (एफडब्ल्यूएचटी) का उपयोग किया जा सकता है। रेडियो खगोल विज्ञान में, वॉल्श फ़ंक्शंस एंटीना संकेतों के मध्य विद्युत क्रॉसस्टॉक के प्रभाव को कम करने में सहायता कर सकते हैं। इन्हें निष्क्रिय एलसीडी पैनलों में X और Y बाइनरी ड्राइविंग वेवफॉर्म के रूप में भी उपयोग किया जाता है जहां X और Y के मध्य ऑटोसहसंबंध को बंद पिक्सेल के लिए न्यूनतम बनाया जा सकता है।

यह भी देखें

टिप्पणियाँ


संदर्भ

  • Ferleger, Sergei V. (March 1998). RUC-Systems In Non-Commutative Symmetric Spaces (Technical report). MP-ARC-98-188.
  • Ferleger, Sergei V.; Sukochev, Fyodor A. (March 1996). "On the contractibility to a point of the linear groups of reflexive non-commutative Lp-spaces". Mathematical Proceedings of the Cambridge Philosophical Society. 119 (3): 545–560. Bibcode:1996MPCPS.119..545F. doi:10.1017/s0305004100074405.
  • Schipp, Ferenc; Wade, W.R.; Simon, P. (1990). Walsh series. An introduction to dyadic harmonic analysis. Akadémiai Kiadó.
  • Sukochev, Fyodor A.; Ferleger, Sergei V. (December 1995). "Harmonic analysis in (UMD)-spaces: Applications to the theory of bases". Mathematical Notes. 58 (6): 1315–1326. doi:10.1007/bf02304891. S2CID 121256402.


बाहरी संबंध