शिथिलन (भौतिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
भौतिक विज्ञान में शिथिलन का अर्थ सामान्य रूप से विकृत प्रणाली का [[थर्मोडायनामिक संतुलन|सन्तुलन (थर्मोडायनामिक)]] में लौटना है।
भौतिक विज्ञान में शिथिलन का अर्थ सामान्य रूप से विकृत प्रणाली का [[थर्मोडायनामिक संतुलन|सन्तुलन (थर्मोडायनामिक)]] में लौटना है।


प्रत्येक शिथिलन प्रक्रिया को शिथिलन समय <big>τ</big> (टाउ) द्वारा वर्गीकृत किया जाता है। समय 'टी' के कार्य के रूप में शिथिलन का सबसे सरल सैद्धांतिक विवरण घातीय नियम ([[घातीय क्षय]]) {{math|exp(−''t''/''&tau;'')}} है।
प्रत्येक शिथिलन प्रक्रिया को शिथिलन समय <big>τ</big> (टाउ) द्वारा वर्गीकृत किया जाता है। समय 't' के फंक्शन के रूप में शिथिलन का सबसे सरल सैद्धांतिक विवरण घातीय नियम ([[घातीय क्षय]]) {{math|exp(−''t''/''&tau;'')}} है।


== सरल रैखिक प्रणालियों में ==
== सरल रैखिक प्रणालियों में ==
Line 49: Line 49:
=== मोनोमोलेक्युलर प्रथम-क्रम प्रतिवर्ती प्रतिक्रिया ===
=== मोनोमोलेक्युलर प्रथम-क्रम प्रतिवर्ती प्रतिक्रिया ===
मोनोमोलेक्यूलर, प्रथम क्रम प्रतिवर्ती प्रतिक्रिया जो संतुलन के निकट है निम्नलिखित प्रतीकात्मक संरचना द्वारा देखी जा सकती है:
मोनोमोलेक्यूलर, प्रथम क्रम प्रतिवर्ती प्रतिक्रिया जो संतुलन के निकट है निम्नलिखित प्रतीकात्मक संरचना द्वारा देखी जा सकती है:
<math chem display="block">\ce{A} ~ \overset{k}{\rightarrow} ~ \ce{B} ~ \overset{k'}{\rightarrow} ~ \ce{A}</math>     <chem>A <=> B</chem>
<math chem display="block">\ce{A} ~ \overset{k}{\rightarrow} ~ \ce{B} ~ \overset{k'}{\rightarrow} ~ \ce{A}</math>       <chem>A <=> B</chem>


दूसरे शब्दों में k प्रतिक्रिया दर स्थिरांक और k' के आधार पर अभिकारक A और उत्पाद B एक दूसरे में परिवर्तित हो रहे हैं।
दूसरे शब्दों में k प्रतिक्रिया दर स्थिरांक और k' के आधार पर अभिकारक A और उत्पाद B एक दूसरे में परिवर्तित हो रहे हैं।

Revision as of 22:39, 29 March 2023

भौतिक विज्ञान में शिथिलन का अर्थ सामान्य रूप से विकृत प्रणाली का सन्तुलन (थर्मोडायनामिक) में लौटना है।

प्रत्येक शिथिलन प्रक्रिया को शिथिलन समय τ (टाउ) द्वारा वर्गीकृत किया जाता है। समय 't' के फंक्शन के रूप में शिथिलन का सबसे सरल सैद्धांतिक विवरण घातीय नियम (घातीय क्षय) exp(−t/τ) है।

सरल रैखिक प्रणालियों में

यांत्रिकी: अवमंदित सहज दोलक

सजातीय अंतर समीकरण:

मॉडल ने एक स्प्रिंग पर भार के अप्रत्याशित दोलनों को अवमंदित किया।

तब विस्थापन का रूप होगा, स्थिर T () को प्रणाली का शिथिलन समय कहा जाता है और μ निरंतर अर्ध-आवृत्ति है।

इलेक्ट्रॉनिक्स: आरसी परिपथ

जब आरसी (RC) परिपथ में चार्ज कैपेसिटर और प्रतिरोधी होता है तब वोल्टेज शीघ्रता से घटता है:

नियतांक परिपथ का शिथिलन काल या RC समय नियतांक कहा जाता है। नॉनलाइनियर इलेक्ट्रॉनिक ऑसिलेटर परिपथ जो प्रतिरोध के माध्यम से कैपेसिटर के दोहराए जाने वाले निर्वहन द्वारा दोहराई जाने वाली तरंग उत्पन्न करता है शिथिलन दोलक कहलाता है।

संघनित पदार्थ भौतिकी में

संघनित पदार्थ भौतिकी में शिथिलन का अध्ययन सामान्य रूप से छोटे बाहरी व्यवधान के लिए रैखिक प्रतिक्रिया फंक्शन के रूप में किया जाता है। चूंकि बाहरी गड़बड़ी की अनुपस्थिति में भी अंतर्निहित सूक्ष्म प्रक्रियाएं सक्रिय होती हैं इसलिए सामान्य "संतुलन में शिथिलन" के स्थान पर "संतुलन के अंतर्गत शिथिलन " का अध्ययन भी किया जा सकता है, (अस्थिरता-अपव्यय प्रमेय देखें)।

तनाव में शिथिलन

सातत्य यांत्रिकी में तनाव, शिथिलीकरण विस्कोइलास्टिक माध्यम से विकृत होने के पश्चात तनाव (यांत्रिकी) का धीरे-धीरे लुप्त होना है।

डाइइलेक्ट्रिक शिथिलन समय

डाइइलेक्ट्रिक पदार्थों में डाइइलेक्ट्रिक ध्रुवीकरण घनत्व P विद्युत क्षेत्र E पर निर्भर करता है। यदि E बदलता है तो P (t) प्रतिक्रिया करता है जिससे ध्रुवीकरण एक नए संतुलन की ओर शिथिलन करता है। डाइइलेक्ट्रिक स्पेक्ट्रोस्कोपी में यह महत्वपूर्ण होता है। डाइइलेक्ट्रिक अवशोषण के लिए बहुत लंबा कारक शिथिलन समय होता है।

डाइइलेक्ट्रिक शिथिलन समय विद्युत चालकता से निकटता से संबंधित है। यह देखा जाता है कि अर्धचालक में चालन प्रक्रिया द्वारा इसके निष्प्रभावी होने में कितना समय लगता है। यह शिथिलन समय धातुओं में कम होता है और अर्धचालक और विद्युत रोधन में अधिक हो सकता है।

तरल पदार्थ और अनाकार ठोस

अनाकार ठोस जैसे कि अनाकार इंडोमिथैसिन आणविक गति की तापमान निर्भरता को प्रदर्शित करता है जिसे क्रिस्टल की आणविक गति विशेषता तक पहुंचने के लिए मेटास्टेबल सुपरकूलिंग तरल या कांच में ठोस के लिए औसत शिथिलन समय के रूप में परिमाणित किया जा सकता है। विशेष प्रकार की स्कैनिंग उष्मामिति का उपयोग आणविक संरचनात्मक शिथिलन के कारण होने वाले तापीय धारिता परिवर्तन की मात्रा निर्धारित करने के लिए किया जा सकता है।

सन 1947/48 में वैज्ञानिक साहित्य में संरचनात्मक शिथिलन शब्द बिना किसी स्पष्टीकरण के प्रस्तुत किया गया था जिसे NMR (एनएमआर) पर लागू किया गया और इसका अर्थ थर्मल शिथिलन के समान था।[1]

एनएमआर में स्पिन शिथिलन

परमाणु चुंबकीय अनुनाद (एनएमआर) में विभिन्न शिथिलन गुण हैं जिसके द्वारा इसे मापा जाता है।

रासायनिक शिथिलन के प्रकार

रासायनिक कैनेटीक्स में बहुत शीघ्रता से प्रतिक्रिया दर के मापन हेतु शिथिलन विधियों का उपयोग किया जाता है। प्रारंभ में संतुलन पर प्रणाली तापमान (सामान्य रूप से), दबाव, विद्युत क्षेत्र या विलायक के पीएच (pH) जैसे पैरामीटर में शीघ्रता से परिवर्तन से व्यवधान होता है। सामान्य रूप से स्पेक्ट्रोस्कोपिक माध्यमों से संतुलन की वापसी तब देखी जाती है और शिथिलन का समय मापा जाता है। प्रणाली के रासायनिक संतुलन स्थिरांक के संयोजन में यह आगे और विपरीत प्रतिक्रियाओं के लिए दर स्थिरांक के निर्धारण को सक्षम बनाता है।[2]

मोनोमोलेक्युलर प्रथम-क्रम प्रतिवर्ती प्रतिक्रिया

मोनोमोलेक्यूलर, प्रथम क्रम प्रतिवर्ती प्रतिक्रिया जो संतुलन के निकट है निम्नलिखित प्रतीकात्मक संरचना द्वारा देखी जा सकती है:

दूसरे शब्दों में k प्रतिक्रिया दर स्थिरांक और k' के आधार पर अभिकारक A और उत्पाद B एक दूसरे में परिवर्तित हो रहे हैं।

A की संघनता के लिए हल करने हेतु आगे की प्रतिक्रिया () को ज्ञात करना समय के साथ A की संघनता को कम करने का कारण बनता है जबकि विपरीत प्रतिक्रिया () समय के साथ A की संघनता में वृद्धि का कारण बनता है।

इसलिए, , जहां A और B के चारों ओर कोष्ठक संघनता इंगित करते हैं।

यदि हम कहते हैं कि और द्रव्यमान के संरक्षण के नियम को लागू करते हुए हम कह सकते हैं कि किसी भी समय, A और B की संघनता का योग की सांद्रता के बराबर होना चाहिए, यह मानकर कि जिस मात्रा में A और B घुले हैं, वह परिवर्तित नहीं होता है:

[B] के लिए [A]0 और [A] (t) उपज के संदर्भ में इस मान को प्रतिस्थापित करना
जो वियोज्य अंतर समीकरण बन जाता है
इस समीकरण को उपज के प्रतिस्थापन द्वारा हल किया जा सकता है


वायुमंडलीय विज्ञान में

मेघों का असंतृप्तीकरण

बादल के अतिसंतृप्त भाग पर विचार करें। फिर अपड्राफ्ट, एंट्रेनमेंट और किसी भी अन्य वाष्प स्रोत/ सिंक और वस्तुओं को बंद कर दें जो कणों (बर्फ या पानी) के विकास को प्रेरित करेंगे। इसके पश्चात इस अधिसंतृप्ति के कम होने और केवल संतृप्ति (सापेक्ष आर्द्रता = 100%) बनने की प्रतीक्षा करें जो कि संतुलन अवस्था है। अतिसंतृप्ति के समाप्त होने में लगने वाले समय को शिथिलन काल कहते हैं। यह बर्फ के क्रिस्टल या तरल पानी की मात्रा के बादल के भीतर बढ़ने के रूप में होगा और इस प्रकार निहित नमी का उपभोग करेगा। सटीक गणितीय मॉडलिंग के लिए क्लाउड भौतिकी में शिथिलन की गतिशीलता बहुत महत्वपूर्ण है।

पानी के बादलों में जहां सांद्रता अधिक होती है (सैकड़ों प्रति सेमी 3) और तापमान गर्म होता है (इस प्रकार बर्फ के बादलों की तुलना में अत्यधिक कम अतिसंतृप्ति दर की अनुमति देता है) वहां शिथिलन का समय बहुत कम (सेकंड से मिनट) होगा।[3]

बर्फ के बादलों में सांद्रता कम होती है (बस कुछ प्रति लीटर) और तापमान ठंडा होता है (बहुत उच्च सुपरसेटरेशन दर) और इसलिए शिथिलन का समय कई घंटों तक हो सकता है। शिथिलन का समय दिया जाता है

t = (4π DNRK)−1 second,

कहाँ:

  • D = प्रसार गुणांक [m2/s]
  • N = एकाग्रता (बर्फ के क्रिस्टल या पानी की बूंदों की) [m−3]
  • R = कणों की औसत त्रिज्या [m]
  • K = समाई [इकाई रहित]।

खगोल विज्ञान में

खगोल विज्ञान में शिथिलन का समय गुरुत्वाकर्षण से परस्पर क्रिया करने वाले पिंडों के समूहों से संबंधित होता है उदाहरण के लिए आकाशगंगा में तारे। शिथिलन का समय उस समय की माप है जो सिस्टम में वस्तु (परीक्षण तारा) के लिए प्रणाली में अन्य वस्तुओं (फ़ील्ड सितारों) द्वारा महत्वपूर्ण रूप से अशान्त होने के लिए लेता है। यह सामान्य रूप से टेस्ट स्टार के वेग के आदेश के अनुसार बदलने के समय के रूप में परिभाषित किया जाता है।

मान लीजिए कि परीक्षण तारे का वेग v है। जैसे ही तारा अपनी कक्षा के साथ-साथ चलता है उसकी गति पास के तारों के गुरुत्वाकर्षण क्षेत्र से अनियमित रूप से प्रभावित होगी। शिथिलन का समय दिखाया जा सकता है [4]

जहां ρ माध्य घनत्व है, m परीक्षण-तारा द्रव्यमान है, σ फ़ील्ड सितारों का 1d वेग फैलाव है और ln Λ कूलम्ब टक्कर, कूलम्ब लघुगणक है।

विभिन्न घटनाएँ शिथिलन के समय से संबंधित होती हैं जिनमें कोर पतन (क्लस्टर), ऊर्जा समविभाजन और अत्यधिक द्रव्यमान वाले ब्लैक होल के चारों ओर बहकाल-वुल्फ पुच्छ का निर्माण सम्मिलित है।

यह भी देखें

संदर्भ

  1. Kittel, Rep. Prog. Phys. 1947; Hall, Phys. Rev. 1948; Wintner Phys. Rev. 1948.
  2. Atkins P. and de Paula J. Atkins' Physical Chemistry (8th ed., W.H.Freeman 2006) p.805-7, ISBN 0-7167-8759-8
  3. Rogers, R.R.; Yau, M.K. (1989). क्लाउड भौतिकी में एक लघु पाठ्यक्रम. International Series in Natural Philosophy. Vol. 113 (3rd ed.). Elsevier Science. ISBN 0750632151.
  4. Spitzer, Lyman (1987). गोलाकार समूहों का गतिशील विकास. Princeton, NJ: Princeton University Press. p. 191. ISBN 0691083096.