स्तरीकृत चार्ज इंजन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
'''स्तरीकृत चार्ज इंजन''' निश्चित प्रकार के आंतरिक [[दहन]] इंजन का वर्णन करता है, सामान्यतः दहन प्रज्वलन (एसआई) इंजन जिसका उपयोग ट्रक, [[ऑटोमोबाइल]], पोर्टेबल और स्थिर उपकरण में किया जा सकता है। शब्द "स्तरीकृत आवेश" सिलेंडर में प्रवेश करने वाले कार्यशील तरल पदार्थ और ईंधन वाष्प को संदर्भित करता है। सामान्यतः ईंधन को [[इंजन सिलेंडर]] में | '''स्तरीकृत चार्ज इंजन''' निश्चित प्रकार के आंतरिक [[दहन]] इंजन का वर्णन करता है, सामान्यतः दहन प्रज्वलन (एसआई) इंजन जिसका उपयोग ट्रक, [[ऑटोमोबाइल]], पोर्टेबल और स्थिर उपकरण में किया जा सकता है। शब्द "स्तरीकृत आवेश" सिलेंडर में प्रवेश करने वाले कार्यशील तरल पदार्थ और ईंधन वाष्प को संदर्भित करता है। सामान्यतः ईंधन को [[इंजन सिलेंडर]] में या ईंधन समृद्ध वाष्प के रूप में प्रवेशित किया जाता है जहां दहन या अन्य साधनों का उपयोग प्रज्वलन प्रारंभ करने के लिए किया जाता है जहां ईंधन समृद्ध क्षेत्र पूर्ण दहन को बढ़ावा देने के लिए वायु के संपर्क में आता है। स्तरीकृत चार्ज आंतरिक दहन इंजनों की तुलना में "नॉक" और लीनर वायु/ईंधन अनुपात के बिना अधिक संपीड़न अनुपात की अनुमति दे सकता है। | ||
परंपरागत रूप से, [[फोर स्ट्रोक इंजन]] (पेट्रोल या गैसोलीन) [[ओटो चक्र|ओटो साइकिल]] इंजन को सेवन स्ट्रोक के समय [[दहन कक्ष]] में वायु और ईंधन के मिश्रण का उपयोग करके ईंधन दिया जाता है। यह सजातीय आवेश उत्पन्न करता है: वायु और ईंधन का सजातीय मिश्रण, जो [[संपीड़न स्ट्रोक]] के शीर्ष के निकट पूर्व निर्धारित क्षण में [[स्पार्क प्लग|दहन प्लग]] द्वारा प्रज्वलित होता है। | परंपरागत रूप से, [[फोर स्ट्रोक इंजन]] (पेट्रोल या गैसोलीन) [[ओटो चक्र|ओटो साइकिल]] इंजन को सेवन स्ट्रोक के समय [[दहन कक्ष]] में वायु और ईंधन के मिश्रण का उपयोग करके ईंधन दिया जाता है। यह सजातीय आवेश उत्पन्न करता है: वायु और ईंधन का सजातीय मिश्रण, जो [[संपीड़न स्ट्रोक]] के शीर्ष के निकट पूर्व निर्धारित क्षण में [[स्पार्क प्लग|दहन प्लग]] द्वारा प्रज्वलित होता है। | ||
Line 5: | Line 5: | ||
सजातीय आवेश प्रणाली में, वायु/ईंधन अनुपात को [[रससमीकरणमितीय|स्टोइकियोमेट्रिक]] के अधिक निकट रखा जाता है, जिसका अर्थ है कि इसमें ईंधन के पूर्ण दहन के लिए आवश्यक वायु की त्रुटिहीन मात्रा होती है। यह स्थिर दहन देता है, किन्तु यह इंजन की दक्षता पर ऊपरी सीमा रखता है: सजातीय चार्ज के साथ अधिक महीन मिश्रण (कम ईंधन या अधिक वायु) ईंधन अर्थव्यवस्था में सुधार करने का कोई भी प्रयास धीमा दहन और उच्च इंजन तापमान का परिणाम देता है; यह शक्ति और उत्सर्जन पर प्रभाव डालता है, विशेष रूप से नाइट्रोजन ऑक्साइड या NOx को बढ़ाता है।. | सजातीय आवेश प्रणाली में, वायु/ईंधन अनुपात को [[रससमीकरणमितीय|स्टोइकियोमेट्रिक]] के अधिक निकट रखा जाता है, जिसका अर्थ है कि इसमें ईंधन के पूर्ण दहन के लिए आवश्यक वायु की त्रुटिहीन मात्रा होती है। यह स्थिर दहन देता है, किन्तु यह इंजन की दक्षता पर ऊपरी सीमा रखता है: सजातीय चार्ज के साथ अधिक महीन मिश्रण (कम ईंधन या अधिक वायु) ईंधन अर्थव्यवस्था में सुधार करने का कोई भी प्रयास धीमा दहन और उच्च इंजन तापमान का परिणाम देता है; यह शक्ति और उत्सर्जन पर प्रभाव डालता है, विशेष रूप से नाइट्रोजन ऑक्साइड या NOx को बढ़ाता है।. | ||
सरल शब्दों में स्तरीकृत चार्ज इंजन दहन के निकट ईंधन का समृद्ध मिश्रण | सरल शब्दों में स्तरीकृत चार्ज इंजन दहन के निकट ईंधन का समृद्ध मिश्रण और दहन कक्ष के शेष भागों में महीन मिश्रण बनाता है। समृद्ध मिश्रण सरलता से प्रज्वलित होता है और परिवर्तन में पूर्ण कक्ष में महीन मिश्रण को प्रज्वलित करता है; अंतत: इंजन को कम मिश्रण का उपयोग करने की अनुमति देता है जिससे पूर्ण दहन सुनिश्चित करते हुए दक्षता में सुधार होता है। | ||
== लाभ == | == लाभ == | ||
=== उच्च संपीड़न अनुपात === | === उच्च संपीड़न अनुपात === | ||
[[थर्मोडायनामिक दक्षता]] में सुधार के लिए उच्च यांत्रिक संपीड़न अनुपात, या [[मजबूर प्रेरण|स्थिर प्रेरण]] के साथ गतिशील संपीड़न अनुपात का उपयोग किया जा सकता है। ईंधन को दहन कक्ष में तब तक प्रवेशित नहीं किया जाता है, जब तक कि दहन प्रारंभ | [[थर्मोडायनामिक दक्षता]] में सुधार के लिए उच्च यांत्रिक संपीड़न अनुपात, या [[मजबूर प्रेरण|स्थिर प्रेरण]] के साथ गतिशील संपीड़न अनुपात का उपयोग किया जा सकता है। ईंधन को दहन कक्ष में तब तक प्रवेशित नहीं किया जाता है, जब तक कि दहन प्रारंभ नहीं होता है, पूर्व-प्रज्वलन या इंजन के प्रवेश का अधिक कम संकट होता है। | ||
=== लीनर बर्न === | === लीनर बर्न === | ||
{{main|लीन बर्न}} | {{main|लीन बर्न}} | ||
स्तरीकृत आवेश का उपयोग करते हुए इंजन अधिक कम समग्र वायु/ईंधन अनुपात | स्तरीकृत आवेश का उपयोग करते हुए इंजन अधिक कम समग्र वायु/ईंधन का अनुपात है, जिसमें समृद्ध ईंधन मिश्रण का छोटा आवेश पहले प्रज्वलित होता है और महीन ईंधन मिश्रण के बड़े आवेश के दहन में सुधार के लिए उपयोग किया जाता है। | ||
== हानि == | == हानि == | ||
हानि में सम्मिलित हैं: | हानि में सम्मिलित हैं: | ||
* प्रवेशित व्यय और जटिलता में वृद्धि | * प्रवेशित व्यय और जटिलता में वृद्धि | ||
* उच्च ईंधन दबाव | * उच्च ईंधन दबाव आवश्यकता | ||
* अत्यंत महीन क्षेत्रों की उपस्थिति के कारण NO<sub>x</sub> बनता है। ये ज़ोन सामान्यतः गैसोलीन इंजन में उपस्थित नहीं होते हैं, क्योंकि वायु और ईंधन उत्तम मिश्रित होते हैं। | * अत्यंत महीन क्षेत्रों की उपस्थिति के कारण NO<sub>x</sub> बनता है। ये ज़ोन सामान्यतः गैसोलीन इंजन में उपस्थित नहीं होते हैं, क्योंकि वायु और ईंधन उत्तम मिश्रित होते हैं। | ||
Line 26: | Line 26: | ||
यदि दहन प्लग में महीन मिश्रण उपस्थित है तो दहन समस्याग्रस्त हो सकता है। चूँकि, दहन-कक्ष में कहीं अधिक तुलना पेट्रोल इंजन में सीधे ईंधन भरने से अधिक ईंधन को दहन-प्लग की ओर निर्देशित करने की अनुमति मिलती है।<ref>{{cite web |url=http://www.renault.com/en/Innovation/eco-technologies/Documents_Without_Moderation/PDF%20ENV%20GB/Stratified-charge%20engine.pdf |title=32 (17) strat |access-date=2014-05-10 |url-status=dead |archive-url=https://web.archive.org/web/20130927033559/http://www.renault.com/en/Innovation/eco-technologies/Documents_Without_Moderation/PDF%20ENV%20GB/Stratified-charge%20engine.pdf |archive-date=2013-09-27 }}</ref> इसका परिणाम स्तरीकृत चार्ज में होता है: जिसमें वायु/ईंधन अनुपात पूर्ण दहन-कक्ष में सजातीय नहीं होता है, किन्तु सिलेंडर के आयतन में नियंत्रित (और संभावित रूप से अधिक जटिल) विधि से भिन्न होता है। | यदि दहन प्लग में महीन मिश्रण उपस्थित है तो दहन समस्याग्रस्त हो सकता है। चूँकि, दहन-कक्ष में कहीं अधिक तुलना पेट्रोल इंजन में सीधे ईंधन भरने से अधिक ईंधन को दहन-प्लग की ओर निर्देशित करने की अनुमति मिलती है।<ref>{{cite web |url=http://www.renault.com/en/Innovation/eco-technologies/Documents_Without_Moderation/PDF%20ENV%20GB/Stratified-charge%20engine.pdf |title=32 (17) strat |access-date=2014-05-10 |url-status=dead |archive-url=https://web.archive.org/web/20130927033559/http://www.renault.com/en/Innovation/eco-technologies/Documents_Without_Moderation/PDF%20ENV%20GB/Stratified-charge%20engine.pdf |archive-date=2013-09-27 }}</ref> इसका परिणाम स्तरीकृत चार्ज में होता है: जिसमें वायु/ईंधन अनुपात पूर्ण दहन-कक्ष में सजातीय नहीं होता है, किन्तु सिलेंडर के आयतन में नियंत्रित (और संभावित रूप से अधिक जटिल) विधि से भिन्न होता है। | ||
चार्ज स्तरीकरण भी प्राप्त किया जा सकता है जहां 'सिलेंडर में' स्तरीकरण नहीं है: प्रवेशित मिश्रण इतना महीन हो सकता है कि | चार्ज स्तरीकरण भी प्राप्त किया जा सकता है जहां 'सिलेंडर में' स्तरीकरण नहीं है: प्रवेशित मिश्रण इतना महीन हो सकता है कि दहन प्लग द्वारा प्रदान की जाने वाली सीमित ऊर्जा से इसे प्रज्वलित नहीं किया जा सकता है। चूँकि, यह असाधारण महीन मिश्रण 12-15: 1 के मिश्रण शक्ति के उपयोग से प्रज्वलित किया जा सकता है, पेट्रोल ईंधन वाले इंजन की स्तिथि में, छोटे से दहन कक्ष में उपयोग किया जा रहा है मिश्रण कक्ष मुख्य झुकाव से जुड़ा हुआ है। इस जलते हुए मिश्रण से निकलने वाली बड़ी लौ चार्ज को जलाने के लिए पर्याप्त है। चार्ज स्तरीकरण की इस पद्धति से यह देखा जा सकता है कि लीन चार्ज 'प्रज्ज्वलित' है और स्तरीकरण के इस रूप का उपयोग करने वाला इंजन अब 'नॉक' या अनियंत्रित दहन के अधीन नहीं है। इसलिए लीन चार्ज में जलाया जा रहा ईंधन 'नॉक' या ऑक्टेन प्रतिबंधित नहीं है। इस प्रकार का स्तरीकरण इसलिए विभिन्न प्रकार के ईंधन का उपयोग कर सकता है; विशिष्ट ऊर्जा उत्पादन केवल ईंधन के कैलोरी मान पर निर्भर करता है। | ||
मल्टी-होल प्रवेशित का उपयोग करके अपेक्षाकृत समृद्ध वायु/ईंधन मिश्रण को दहन-प्लग की ओर निर्देशित किया जाता है। इस मिश्रण का दहन किया जाता है, जिससे स्थिर, समान और पूर्वानुमेय लौ-सामने मिलती है। यह परिवर्तन में सिलेंडर के निर्बल मिश्रण के उच्च गुणवत्ता वाले दहन का परिणाम है। | मल्टी-होल प्रवेशित का उपयोग करके अपेक्षाकृत समृद्ध वायु/ईंधन मिश्रण को दहन-प्लग की ओर निर्देशित किया जाता है। इस मिश्रण का दहन किया जाता है, जिससे स्थिर, समान और पूर्वानुमेय लौ-सामने मिलती है। यह परिवर्तन में सिलेंडर के निर्बल मिश्रण के उच्च गुणवत्ता वाले दहन का परिणाम है। | ||
Line 63: | Line 63: | ||
मर्सिडीज बेंज अपने ब्लू डायरेक्ट प्रणाली के साथ स्तरीकृत चार्ज इंजन लगा रहा है। | मर्सिडीज बेंज अपने ब्लू डायरेक्ट प्रणाली के साथ स्तरीकृत चार्ज इंजन लगा रहा है। | ||
स्तरीकृत-चार्ज एप्लिकेशन के साथ, 3.0L V-6 प्रत्यक्ष ईंधन प्रवेशित को नियोजित करना प्रस्तावित रखेगा, किन्तु प्रवेशित के पश्चात सेवन स्ट्रोक में उच्च दबाव में संपीड़न से | स्तरीकृत-चार्ज एप्लिकेशन के साथ, 3.0L V-6 प्रत्यक्ष ईंधन प्रवेशित को नियोजित करना प्रस्तावित रखेगा, किन्तु प्रवेशित के पश्चात सेवन स्ट्रोक में उच्च दबाव में संपीड़न से पूर्व स्प्रे करने के लिए फिर से डिजाइन किया गया है, और ईंधन को अंदर आने के लिए आकार दिया गया है। दहन को अनुकूलित करने के लिए सिलेंडर के भीतर कुछ क्षेत्र रणनीति कक्ष के भीतर वायु-ईंधन मिश्रण बनाती है जो परंपरागत सजातीय-प्रभारी प्रणाली की तुलना में अधिक कम है जो कक्ष को दहन से पूर्व समान रूप से भरती है। | ||
== अनुसंधान == | == अनुसंधान == | ||
Line 70: | Line 70: | ||
== टीएफएसआई इंजन == | == टीएफएसआई इंजन == | ||
टर्बो ईंधन स्तरीकृत प्रवेशित (TFSI) प्रकार के फ़ोर्स्ड-एस्पिरेशन ([[टर्बोचार्जर]]) इंजन के लिए [[वोक्सवैगन समूह]] का ट्रेडमार्क है, जहां ईंधन को दहन कक्ष में | टर्बो ईंधन स्तरीकृत प्रवेशित (TFSI) प्रकार के फ़ोर्स्ड-एस्पिरेशन ([[टर्बोचार्जर]]) इंजन के लिए [[वोक्सवैगन समूह]] का ट्रेडमार्क है, जहां ईंधन को दहन कक्ष में सरलता से प्रवेश किया जाता है कि स्तरीकृत चार्ज बनाया जा सके। एफएसआई [[ गैसोलीन प्रत्यक्ष इंजेक्शन |गैसोलीन प्रत्यक्ष प्रवेशित]] तकनीक [[ चिंगारी प्रज्वलन |दहन प्रज्वलन]] इंजनों के टॉर्क और शक्ति को बढ़ाती है, उन्हें 15 प्रतिशत तक अधिक मितव्ययी बनाती है और निकास उत्सर्जन को कम करती है।<ref>{{cite web|url=http://www.audi.co.uk/audi/uk/en2/tools/glossary/engine_driveline/fsi.html |title=Audi UK > Glossary > Engine & Driveline > FSI® |access-date=July 24, 2009 |url-status=dead |archive-url=https://web.archive.org/web/20090428151335/http://www.audi.co.uk/audi/uk/en2/tools/glossary/engine_driveline/fsi.html |archive-date=April 28, 2009 }}</ref> | ||
Revision as of 00:34, 21 June 2023
स्तरीकृत चार्ज इंजन निश्चित प्रकार के आंतरिक दहन इंजन का वर्णन करता है, सामान्यतः दहन प्रज्वलन (एसआई) इंजन जिसका उपयोग ट्रक, ऑटोमोबाइल, पोर्टेबल और स्थिर उपकरण में किया जा सकता है। शब्द "स्तरीकृत आवेश" सिलेंडर में प्रवेश करने वाले कार्यशील तरल पदार्थ और ईंधन वाष्प को संदर्भित करता है। सामान्यतः ईंधन को इंजन सिलेंडर में या ईंधन समृद्ध वाष्प के रूप में प्रवेशित किया जाता है जहां दहन या अन्य साधनों का उपयोग प्रज्वलन प्रारंभ करने के लिए किया जाता है जहां ईंधन समृद्ध क्षेत्र पूर्ण दहन को बढ़ावा देने के लिए वायु के संपर्क में आता है। स्तरीकृत चार्ज आंतरिक दहन इंजनों की तुलना में "नॉक" और लीनर वायु/ईंधन अनुपात के बिना अधिक संपीड़न अनुपात की अनुमति दे सकता है।
परंपरागत रूप से, फोर स्ट्रोक इंजन (पेट्रोल या गैसोलीन) ओटो साइकिल इंजन को सेवन स्ट्रोक के समय दहन कक्ष में वायु और ईंधन के मिश्रण का उपयोग करके ईंधन दिया जाता है। यह सजातीय आवेश उत्पन्न करता है: वायु और ईंधन का सजातीय मिश्रण, जो संपीड़न स्ट्रोक के शीर्ष के निकट पूर्व निर्धारित क्षण में दहन प्लग द्वारा प्रज्वलित होता है।
सजातीय आवेश प्रणाली में, वायु/ईंधन अनुपात को स्टोइकियोमेट्रिक के अधिक निकट रखा जाता है, जिसका अर्थ है कि इसमें ईंधन के पूर्ण दहन के लिए आवश्यक वायु की त्रुटिहीन मात्रा होती है। यह स्थिर दहन देता है, किन्तु यह इंजन की दक्षता पर ऊपरी सीमा रखता है: सजातीय चार्ज के साथ अधिक महीन मिश्रण (कम ईंधन या अधिक वायु) ईंधन अर्थव्यवस्था में सुधार करने का कोई भी प्रयास धीमा दहन और उच्च इंजन तापमान का परिणाम देता है; यह शक्ति और उत्सर्जन पर प्रभाव डालता है, विशेष रूप से नाइट्रोजन ऑक्साइड या NOx को बढ़ाता है।.
सरल शब्दों में स्तरीकृत चार्ज इंजन दहन के निकट ईंधन का समृद्ध मिश्रण और दहन कक्ष के शेष भागों में महीन मिश्रण बनाता है। समृद्ध मिश्रण सरलता से प्रज्वलित होता है और परिवर्तन में पूर्ण कक्ष में महीन मिश्रण को प्रज्वलित करता है; अंतत: इंजन को कम मिश्रण का उपयोग करने की अनुमति देता है जिससे पूर्ण दहन सुनिश्चित करते हुए दक्षता में सुधार होता है।
लाभ
उच्च संपीड़न अनुपात
थर्मोडायनामिक दक्षता में सुधार के लिए उच्च यांत्रिक संपीड़न अनुपात, या स्थिर प्रेरण के साथ गतिशील संपीड़न अनुपात का उपयोग किया जा सकता है। ईंधन को दहन कक्ष में तब तक प्रवेशित नहीं किया जाता है, जब तक कि दहन प्रारंभ नहीं होता है, पूर्व-प्रज्वलन या इंजन के प्रवेश का अधिक कम संकट होता है।
लीनर बर्न
स्तरीकृत आवेश का उपयोग करते हुए इंजन अधिक कम समग्र वायु/ईंधन का अनुपात है, जिसमें समृद्ध ईंधन मिश्रण का छोटा आवेश पहले प्रज्वलित होता है और महीन ईंधन मिश्रण के बड़े आवेश के दहन में सुधार के लिए उपयोग किया जाता है।
हानि
हानि में सम्मिलित हैं:
- प्रवेशित व्यय और जटिलता में वृद्धि
- उच्च ईंधन दबाव आवश्यकता
- अत्यंत महीन क्षेत्रों की उपस्थिति के कारण NOx बनता है। ये ज़ोन सामान्यतः गैसोलीन इंजन में उपस्थित नहीं होते हैं, क्योंकि वायु और ईंधन उत्तम मिश्रित होते हैं।
दहन प्रबंधन
यदि दहन प्लग में महीन मिश्रण उपस्थित है तो दहन समस्याग्रस्त हो सकता है। चूँकि, दहन-कक्ष में कहीं अधिक तुलना पेट्रोल इंजन में सीधे ईंधन भरने से अधिक ईंधन को दहन-प्लग की ओर निर्देशित करने की अनुमति मिलती है।[1] इसका परिणाम स्तरीकृत चार्ज में होता है: जिसमें वायु/ईंधन अनुपात पूर्ण दहन-कक्ष में सजातीय नहीं होता है, किन्तु सिलेंडर के आयतन में नियंत्रित (और संभावित रूप से अधिक जटिल) विधि से भिन्न होता है।
चार्ज स्तरीकरण भी प्राप्त किया जा सकता है जहां 'सिलेंडर में' स्तरीकरण नहीं है: प्रवेशित मिश्रण इतना महीन हो सकता है कि दहन प्लग द्वारा प्रदान की जाने वाली सीमित ऊर्जा से इसे प्रज्वलित नहीं किया जा सकता है। चूँकि, यह असाधारण महीन मिश्रण 12-15: 1 के मिश्रण शक्ति के उपयोग से प्रज्वलित किया जा सकता है, पेट्रोल ईंधन वाले इंजन की स्तिथि में, छोटे से दहन कक्ष में उपयोग किया जा रहा है मिश्रण कक्ष मुख्य झुकाव से जुड़ा हुआ है। इस जलते हुए मिश्रण से निकलने वाली बड़ी लौ चार्ज को जलाने के लिए पर्याप्त है। चार्ज स्तरीकरण की इस पद्धति से यह देखा जा सकता है कि लीन चार्ज 'प्रज्ज्वलित' है और स्तरीकरण के इस रूप का उपयोग करने वाला इंजन अब 'नॉक' या अनियंत्रित दहन के अधीन नहीं है। इसलिए लीन चार्ज में जलाया जा रहा ईंधन 'नॉक' या ऑक्टेन प्रतिबंधित नहीं है। इस प्रकार का स्तरीकरण इसलिए विभिन्न प्रकार के ईंधन का उपयोग कर सकता है; विशिष्ट ऊर्जा उत्पादन केवल ईंधन के कैलोरी मान पर निर्भर करता है।
मल्टी-होल प्रवेशित का उपयोग करके अपेक्षाकृत समृद्ध वायु/ईंधन मिश्रण को दहन-प्लग की ओर निर्देशित किया जाता है। इस मिश्रण का दहन किया जाता है, जिससे स्थिर, समान और पूर्वानुमेय लौ-सामने मिलती है। यह परिवर्तन में सिलेंडर के निर्बल मिश्रण के उच्च गुणवत्ता वाले दहन का परिणाम है।
डीजल इंजन के साथ तुलना
प्रत्यक्ष-प्रवेशित डीजल इंजनों के साथ समकालीन सीधे ईंधन वाले पेट्रोल इंजनों की तुलना करना उचित है। डीजल ईंधन की तुलना में पेट्रोल तीव्रता से जल सकता है, जिससे उच्च अधिकतम इंजन गति और इस प्रकार खेल इंजनों के लिए अधिक से अधिक शक्ति की अनुमति मिलती है। दूसरी ओर, डीजल ईंधन में उच्च ऊर्जा घनत्व होता है, और उच्च दहन दबावों के संयोजन में अधिक सामान्य सड़क वाहनों के लिए अधिक स्थिर टॉर्क और उच्च थर्मोडायनामिक दक्षता प्रदान कर सकता है।
'बर्न' दरों की यह तुलना अपेक्षाकृत सरल दृष्टिकोण है। चूँकि पेट्रोल और डीजल इंजन ऑपरेशन में समान दिखाई देते हैं, दो प्रकार पूर्ण रूप से भिन्न सिद्धांतों पर कार्य करते हैं। पहले के निर्मित संस्करणों में बाहरी विशेषताएँ स्पष्ट थीं। अधिकांश पेट्रोल इंजन कार्बोरेटेड थे, इंजन में ईंधन/वायु के मिश्रण का उपयोग करते थे, जबकि डीजल केवल वायु का उपयोग करता था और ईंधन को सीधे सिलेंडर में उच्च दबाव में प्रवेशित किया जाता था। पारंपरिक चार-स्ट्रोक पेट्रोल इंजन में दहन प्लग शीर्ष मृत केंद्र से पहले चालीस डिग्री तक सिलेंडर में मिश्रण को प्रज्वलित करना प्रारंभ कर देता है, जबकि पिस्टन अभी भी बोर की यात्रा कर रहा है। पिस्टन के इस नियम के भीतर बोर के ऊपर, मिश्रण का नियंत्रित दहन होता है और अधिकतम दबाव शीर्ष मृत केंद्र के ठीक पश्चात होता है, साथ ही दबाव कम हो जाता है क्योंकि पिस्टन बोर से नीचे जाता है। अर्थात सिलेंडर दबाव-समय पीढ़ी के संबंध में सिलेंडर आयतन दहन चक्र पर अनिवार्य रूप से स्थिर रहता है। दूसरी ओर डीजल इंजन का संचालन केवल पिस्टन के शीर्ष मृत केंद्र की ओर बढ़ने से ही वायु को अंदर लेता है और संपीड़ित करता है। इस बिंदु पर अधिकतम सिलेंडर दबाव पहुंच गया है। ईंधन को अब सिलेंडर में प्रवेशित किया जाता है और अब संपीड़ित वायु के उच्च तापमान से ईंधन 'दहन' या विस्तार इस बिंदु पर प्रारंभ होता है। जैसे ही ईंधन जलता है, यह पिस्टन पर अत्यधिक दबाव डालता है, जो परिवर्तन में क्रैंकशाफ्ट पर टॉर्क विकसित करता है। यह देखा जा सकता है कि डीजल इंजन निरंतर दबाव में चल रहा है। जैसे-जैसे गैस विस्तारित होती है, पिस्टन भी सिलेंडर के नीचे जा रहा है। इस प्रक्रिया से पिस्टन और पश्चात में क्रैंक अधिक टॉर्क का अनुभव करता है, जो इसके पेट्रोल समकक्ष की तुलना में लंबे समय के अंतराल पर भी लगाया जाता है।
इतिहास
दहन कक्ष में सीधे ईंधन को प्रवेशित करने का सिद्धांत जिस समय दहन प्रारंभ करने की आवश्यकता होती है, प्रथम बार 1887 में जॉर्ज ब्रेटन द्वारा आविष्कार किया गया था, किन्तु इसका उपयोग लंबे समय से पेट्रोल इंजनों में उत्तम प्रभाव के लिए किया जाता रहा है। ब्रेटन ने अपने आविष्कार का वर्णन इस प्रकार किया है: मैंने पाया है कि भारी तेल को यंत्रवत् रूप से सिलेंडर के फायरिंग भाग के भीतर या संचार फायरिंग कक्ष में सूक्ष्म-विभाजित स्थिति में परिवर्तित किया जा सकता है। और भाग पढ़ता है कि मेरे निकट प्रथम बार है, जहां तक मेरी जानकारी विस्तारित हुई है, दहन कक्ष या सिलेंडर में तरल ईंधन के सीधे निर्वहन को तत्काल दहन के लिए अत्यधिक अनुकूल स्थिति में तरल ईंधन के प्रत्यक्ष निर्वहन को नियंत्रित करके विनियमित गति और इंजन की गति/आउटपुट को नियंत्रित करने के लिए लीन बर्न प्रणाली का उपयोग करने वाला यह प्रथम इंजन था। इस प्रकार इंजन प्रत्येक पावर स्ट्रोक पर फायर करता है और गति/आउटपुट को केवल प्रवेशित किए गए ईंधन की मात्रा द्वारा नियंत्रित किया जाता है।
रिकार्डो
हैरी रिकार्डो ने प्रथम बार 1900 के प्रारंभ में लीन बर्न स्तरीकृत चार्ज इंजन के विचार के साथ कार्य करना प्रारंभ किया। 1920 के दशक में उन्होंने अपने प्रथम के डिजाइनों में सुधार किया।
हेसलमैन
गैसोलीन प्रत्यक्ष प्रवेशित का प्रारंभिक उदाहरण 1925 में स्वीडिश इंजीनियर जोनास हेसलमैन द्वारा आविष्कार किया गया हेसलमैन इंजन था। हेसलमैन इंजन ने अल्ट्रा लीन बर्न सिद्धांत का उपयोग किया और संपीड़न स्ट्रोक के अंत में ईंधन को प्रवेशित किया और फिर इसे दहन प्लग से प्रज्वलित किया, यह प्रायः गैसोलीन पर प्रारंभ होता है और फिर डीजल या मिट्टी के तेल में उपयोग के लिए परिवर्तित हो जाता है। टेक्साको नियंत्रित दहन प्रणाली (टीसीसीएस) 1950 के दशक में विकसित बहुईंधन प्रणाली थी जो हेसलमैन डिजाइन के समान थी। यूपीएस डिलीवरी वैन में टीसीसीएस का परीक्षण किया गया और लगभग 35% की अर्थव्यवस्था में समग्र वृद्धि पाई गई।
होंडा
होंडा का सीवीसीसी इंजन, 1970 दशक के प्रारंभिक दशक में होंडा सिविक, फिर होंडा एकॉर्ड और पश्चात के दशक में होंडा सिटी के मॉडल में प्रस्तावित किया गया, यह स्तरीकृत चार्ज इंजन का रूप है जिसे अधिक समय के लिए व्यापक बाजार स्वीकृति मिली थी। सीवीसीसी प्रणाली में पारंपरिक प्रवेश और निकास वाल्व और तीसरा, पूरक, प्रवेशित वाल्व था जो दहन प्लग के निकट के क्षेत्र को चार्ज करता था। दहन प्लग और सीवीसीसी प्रवेशित को छिद्रित धातु प्लेट द्वारा मुख्य सिलेंडर से भिन्न किया गया था। प्रज्वलन के समय लौ समन्वय की श्रृंखला छिद्रों के माध्यम से अधिक महीन मुख्य आवेश में चली जाती है, जिससे पूर्ण प्रज्वलन सुनिश्चित होता है। होंडा सिटी टर्बो में ऐसे इंजनों ने 7,000 आरपीएम और उससे अधिक की इंजन गति पर उच्च शक्ति-से-भार अनुपात का उत्पादन किया।
जगुआर
1980 के दशक में जगुआर कार्स ने जगुआर V12 इंजन, एच.ई. (तथाकथित उच्च दक्षता) संस्करण, जो जगुआर XJ12 और एक्सजेएस मॉडल में फिट होते हैं और इंजन की अधिक भारी ईंधन व्यय को कम करने के लिए 'मे फायरबॉल' नामक स्तरीकृत चार्ज डिज़ाइन का उपयोग करते हैं।
वेस्पा
वेस्पा इटी2 स्कूटर में 50 सीसी दो स्ट्रोक इंजन था जिसमें वायु को ट्रांसफर पोर्ट के माध्यम से प्रवेश किया गया था और इग्निशन से ठीक पहले दहन प्लग के निकट समृद्ध ईंधन मिश्रण को सिलेंडर में प्रवेशित किया गया था। प्रवेशित प्रणाली विशुद्ध रूप से यांत्रिक थी, समयबद्ध पम्पिंग सिलेंडर और नॉन-रिटर्न वाल्व का उपयोग करते है।
अपने नीचे की ओर स्ट्रोक पर यह समृद्ध मिश्रण को लगभग 70 पीएसआई तक संकुचित करता है, जिस समय बढ़ते दबाव से स्प्रिंग लोडेड पॉपपेट वाल्व अपनी सीट से ऊपर उठ जाता है और चार्ज सिलेंडर में विस्तारित हो जाता है। वहाँ यह दहन प्लग क्षेत्र के उद्देश्य से प्रज्वलित है। दहन दबाव तुरंत स्प्रिंग-लोडेड पॉपपेट वाल्व को बंद कर देता है और उसके पश्चात से (एसआईसी) सिलेंडर में उन महीन मिश्रण क्षेत्रों को प्रज्वलित करने वाली लौ के साथ नियमित स्तरीकृत-चार्ज इग्निशन प्रक्रिया होती है।[2]
वोक्सवैगन
वोक्सवैगन वर्तमान में टर्बोचार्जिंग के संयोजन में अपने प्रत्यक्ष प्रवेशित 1.0, 1.2, 1.4, 1.5, 1.8 और 2.0 लीटर टीएफएसआई (टर्बो ईंधन स्तरीकृत इंजेक्शन) गैसोलीन इंजन पर स्तरीकृत चार्ज का उपयोग करता है।
मर्सिडीज बेंज
मर्सिडीज बेंज अपने ब्लू डायरेक्ट प्रणाली के साथ स्तरीकृत चार्ज इंजन लगा रहा है।
स्तरीकृत-चार्ज एप्लिकेशन के साथ, 3.0L V-6 प्रत्यक्ष ईंधन प्रवेशित को नियोजित करना प्रस्तावित रखेगा, किन्तु प्रवेशित के पश्चात सेवन स्ट्रोक में उच्च दबाव में संपीड़न से पूर्व स्प्रे करने के लिए फिर से डिजाइन किया गया है, और ईंधन को अंदर आने के लिए आकार दिया गया है। दहन को अनुकूलित करने के लिए सिलेंडर के भीतर कुछ क्षेत्र रणनीति कक्ष के भीतर वायु-ईंधन मिश्रण बनाती है जो परंपरागत सजातीय-प्रभारी प्रणाली की तुलना में अधिक कम है जो कक्ष को दहन से पूर्व समान रूप से भरती है।
अनुसंधान
एसएई अंतरराष्ट्रीय ने स्तरीकृत चार्ज इंजनों के साथ प्रायोगिक कार्य पर शोधपत्र प्रकाशित किए हैं।[3]
टीएफएसआई इंजन
टर्बो ईंधन स्तरीकृत प्रवेशित (TFSI) प्रकार के फ़ोर्स्ड-एस्पिरेशन (टर्बोचार्जर) इंजन के लिए वोक्सवैगन समूह का ट्रेडमार्क है, जहां ईंधन को दहन कक्ष में सरलता से प्रवेश किया जाता है कि स्तरीकृत चार्ज बनाया जा सके। एफएसआई गैसोलीन प्रत्यक्ष प्रवेशित तकनीक दहन प्रज्वलन इंजनों के टॉर्क और शक्ति को बढ़ाती है, उन्हें 15 प्रतिशत तक अधिक मितव्ययी बनाती है और निकास उत्सर्जन को कम करती है।[4]
लाभ
टीएफएसआई इंजन के कुछ लाभ:
- दहन कक्ष के अंदर उत्तम ईंधन वितरण और उत्तम ईंधन चार्ज होता है।
- प्रवेशित प्रक्रिया के समय सिलेंडर कक्ष को ठंडा करते हुए ईंधन वाष्पित हो जाता है।
- दाबित ईंधन का शीतलन प्रभाव कम ऑक्टेन ईंधन के उपयोग की अनुमति देता है जिससे अंतिम उपयोगकर्ता के लिए व्यय बचत होती है।
- उच्च संपीड़न अनुपात, जो अधिक शक्ति में परिवर्तित होता है।
- ईंधन दहन दक्षता में वृद्धि होती है।
- वाहन के पिक-अप के समय उच्च शक्ति होती है।
हानि
- उत्सर्जित निकास कणों की संख्या में भारी वृद्धि होना।[citation needed]
- इनटेक वाल्व के पीछे कार्बन का निर्माण होता है। चूंकि ईंधन को सीधे दहन कक्ष के अंदर प्रवेशित किया जाता है, इस वाल्व के पीछे किसी भी दूषित पदार्थ को धोने का समय नहीं मिलता है। इसके परिणामस्वरूप समय के साथ अत्यधिक कार्बन का निर्माण होता है, जिससे प्रदर्शन में बाधा आती है। कुछ इंजन (जैसे टोयोटा डायनेमिक फोर्स इंजन) इस समस्या को दूर करने के लिए पारंपरिक मल्टी पोर्ट ईंधन को डायरेक्ट प्रवेशित से जोड़ते हैं।
- अधिक मूल्य- ईंधन को सीधे सिलेंडर में प्रवेशित करने के लिए अधिक दबाव वाले ईंधन पंपों की आवश्यकता होती है। इसके लिए 200 बार तक के ईंधन दबाव की आवश्यकता होती है, जो पारंपरिक मल्टीपोर्ट प्रवेशित सेटअप से अधिक है (गैसोलीन प्रत्यक्ष इंजेक्शन देखें)।[5]
यह भी देखें
संदर्भ
- ↑ "32 (17) strat" (PDF). Archived from the original (PDF) on 2013-09-27. Retrieved 2014-05-10.
- ↑ "Motorcycle Online: Vespa ET2". 2005-07-28. Archived from the original on July 28, 2005. Retrieved 2014-05-10.
{{cite web}}
: CS1 maint: unfit URL (link) - ↑ "Browse Papers on Stratified charge engines : Topic Results - SAE International". Topics.sae.org. Retrieved 2014-05-10.
- ↑ "Audi UK > Glossary > Engine & Driveline > FSI®". Archived from the original on April 28, 2009. Retrieved July 24, 2009.
- ↑ "Bosch Mobility Solutions".