द्रव यांत्रिकी में आयामहीन संख्याएँ: Difference between revisions
(→सूची) |
(→सूची) |
||
Line 187: | Line 187: | ||
| [[Manning formula|मैनिंग खुरदरापन गुणांक]] || ''n'' || || [[open channel flow]] (flow driven by [[gravity]])<ref>{{cite book |author1=Science Applications International Corporation |title=Performing Quality Flow Measurements at Mine Sites |date=2001 |publisher=U.S. Environmental Protection Agency |location=Washington, DC |id=EPA/600/R-01/043 |url=http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30002H0Y.txt}}</ref> | | [[Manning formula|मैनिंग खुरदरापन गुणांक]] || ''n'' || || [[open channel flow]] (flow driven by [[gravity]])<ref>{{cite book |author1=Science Applications International Corporation |title=Performing Quality Flow Measurements at Mine Sites |date=2001 |publisher=U.S. Environmental Protection Agency |location=Washington, DC |id=EPA/600/R-01/043 |url=http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30002H0Y.txt}}</ref> | ||
|- | |- | ||
| [[Marangoni number]] || Mg || <math>\mathrm{Mg} = - {\frac{\mathrm{d}\sigma}{\mathrm{d}T}}\frac{L \Delta T}{\eta \alpha} </math> || [[fluid mechanics]] ([[Marangoni flow]]; thermal [[surface tension]] forces over [[viscosity|viscous]] forces) | | [[Marangoni number|मारांगोनी संख्या]] || Mg || <math>\mathrm{Mg} = - {\frac{\mathrm{d}\sigma}{\mathrm{d}T}}\frac{L \Delta T}{\eta \alpha} </math> || [[fluid mechanics]] ([[Marangoni flow]]; thermal [[surface tension]] forces over [[viscosity|viscous]] forces) | ||
|- | |- | ||
| [[Markstein number]] || Ma || <math>\mathrm{Ma} = \frac{L_b}{l_f}</math> || [[turbulence]], [[combustion]] (Markstein length to laminar flame thickness) | | [[Markstein number|मार्कस्टीन संख्या]] || Ma || <math>\mathrm{Ma} = \frac{L_b}{l_f}</math> || [[turbulence]], [[combustion]] (Markstein length to laminar flame thickness) | ||
|- | |- | ||
| [[Morton number]] || Mo || <math>\mathrm{Mo} = \frac{g \mu_c^4 \, \Delta \rho}{\rho_c^2 \sigma^3} </math> || [[fluid dynamics]] (determination of [[Liquid bubble|bubble]]/[[drop (liquid)|drop]] shape) | | [[Morton number|मॉर्टन संख्या]] || Mo || <math>\mathrm{Mo} = \frac{g \mu_c^4 \, \Delta \rho}{\rho_c^2 \sigma^3} </math> || [[fluid dynamics]] (determination of [[Liquid bubble|bubble]]/[[drop (liquid)|drop]] shape) | ||
|- | |- | ||
| [[Nusselt number]] || Nu ||<math>\mathrm{Nu} =\frac{hd}{k}</math> || [[heat transfer]] (forced [[convection]]; ratio of [[convection|convective]] to [[heat conduction|conductive]] heat transfer) | | [[Nusselt number|नुसेल्ट संख्या]] || Nu ||<math>\mathrm{Nu} =\frac{hd}{k}</math> || [[heat transfer]] (forced [[convection]]; ratio of [[convection|convective]] to [[heat conduction|conductive]] heat transfer) | ||
|- | |- | ||
| [[Ohnesorge number]] || Oh || <math> \mathrm{Oh} = \frac{ \mu}{ \sqrt{\rho \sigma L }} = \frac{\sqrt{\mathrm{We}}}{\mathrm{Re}} </math> || [[fluid dynamics]] (atomization of liquids, [[Marangoni flow]]) | | [[Ohnesorge number|ओहनेसोरगे संख्या]] || Oh || <math> \mathrm{Oh} = \frac{ \mu}{ \sqrt{\rho \sigma L }} = \frac{\sqrt{\mathrm{We}}}{\mathrm{Re}} </math> || [[fluid dynamics]] (atomization of liquids, [[Marangoni flow]]) | ||
|- | |- | ||
| [[Péclet number]] || Pe ||<math>\mathrm{Pe} = \frac{L u}{D} </math> or <math>\mathrm{Pe} = \frac{L u}{\alpha} </math> || [[fluid mechanics]] (ratio of advective transport rate over molecular diffusive transport rate), [[heat transfer]] (ratio of advective transport rate over thermal diffusive transport rate) | | [[Péclet number|पेकलेट संख्या]] || Pe ||<math>\mathrm{Pe} = \frac{L u}{D} </math> or <math>\mathrm{Pe} = \frac{L u}{\alpha} </math> || [[fluid mechanics]] (ratio of advective transport rate over molecular diffusive transport rate), [[heat transfer]] (ratio of advective transport rate over thermal diffusive transport rate) | ||
|- | |- | ||
| [[Prandtl number]] || Pr ||<math>\mathrm{Pr} = \frac{\nu}{\alpha} = \frac{c_p \mu}{k}</math>|| [[heat transfer]] (ratio of [[viscosity|viscous diffusion]] rate over [[Thermal conductivity|thermal diffusion]] rate) | | [[Prandtl number|प्रैंडटल संख्या]] || Pr ||<math>\mathrm{Pr} = \frac{\nu}{\alpha} = \frac{c_p \mu}{k}</math>|| [[heat transfer]] (ratio of [[viscosity|viscous diffusion]] rate over [[Thermal conductivity|thermal diffusion]] rate) | ||
|- | |- | ||
| [[Pressure coefficient]] || ''C<sub>P</sub>'' || <math>C_p = {p - p_\infty \over \frac{1}{2} \rho_\infty V_\infty^2}</math> || [[aerodynamics]], [[hydrodynamics]] ([[pressure]] experienced at a point on an [[airfoil]]; dimensionless pressure variable) | | [[Pressure coefficient|दबाव गुणांक]] || ''C<sub>P</sub>'' || <math>C_p = {p - p_\infty \over \frac{1}{2} \rho_\infty V_\infty^2}</math> || [[aerodynamics]], [[hydrodynamics]] ([[pressure]] experienced at a point on an [[airfoil]]; dimensionless pressure variable) | ||
|- | |- | ||
| [[Rayleigh number]] || Ra || <math>\mathrm{Ra}_{x} = \frac{g \beta} {\nu \alpha} (T_s - T_\infin) x^3 </math> || [[heat transfer]] ([[buoyancy]] versus [[viscous forces]] in [[free convection]]) | | [[Rayleigh number|रेले संख्या]] || Ra || <math>\mathrm{Ra}_{x} = \frac{g \beta} {\nu \alpha} (T_s - T_\infin) x^3 </math> || [[heat transfer]] ([[buoyancy]] versus [[viscous forces]] in [[free convection]]) | ||
|- | |- | ||
| [[Reynolds number]] || Re || <math>\mathrm{Re} = \frac{U L\rho}{\mu}=\frac{U L}{\nu}</math> || [[fluid mechanics]] (ratio of fluid [[inertia]]l and [[viscosity|viscous]] forces)<ref name="berkley">{{cite web|title=Table of Dimensionless Numbers |url=http://www.cchem.berkeley.edu/gsac/grad_info/prelims/binders/dimensionless_numbers.pdf|access-date=2009-11-05}}</ref> | | [[Reynolds number|रेनॉल्ड्स संख्या]] || Re || <math>\mathrm{Re} = \frac{U L\rho}{\mu}=\frac{U L}{\nu}</math> || [[fluid mechanics]] (ratio of fluid [[inertia]]l and [[viscosity|viscous]] forces)<ref name="berkley">{{cite web|title=Table of Dimensionless Numbers |url=http://www.cchem.berkeley.edu/gsac/grad_info/prelims/binders/dimensionless_numbers.pdf|access-date=2009-11-05}}</ref> | ||
|- | |- | ||
| [[Richardson number]] || Ri || <math> \mathrm{Ri} = \frac{gh}{U^2} = \frac{1}{\mathrm{Fr}^2} </math> || [[fluid dynamics]] (effect of [[buoyancy]] on flow stability; ratio of [[Potential Energy|potential]] over [[kinetic energy]])<ref>[http://apollo.lsc.vsc.edu/classes/met455/notes/section4/2.html Richardson number] {{webarchive|url=https://web.archive.org/web/20150302154119/http://apollo.lsc.vsc.edu/classes/met455/notes/section4/2.html |date=2015-03-02 }}</ref> | | [[Richardson number|रिचर्डसन संख्या]] || Ri || <math> \mathrm{Ri} = \frac{gh}{U^2} = \frac{1}{\mathrm{Fr}^2} </math> || [[fluid dynamics]] (effect of [[buoyancy]] on flow stability; ratio of [[Potential Energy|potential]] over [[kinetic energy]])<ref>[http://apollo.lsc.vsc.edu/classes/met455/notes/section4/2.html Richardson number] {{webarchive|url=https://web.archive.org/web/20150302154119/http://apollo.lsc.vsc.edu/classes/met455/notes/section4/2.html |date=2015-03-02 }}</ref> | ||
|- | |- | ||
| [[Roshko number]] || Ro || <math> \mathrm{Ro} = {f L^{2}\over \nu} =\mathrm{St}\,\mathrm{Re} </math> || [[fluid dynamics]] (oscillating flow, [[vortex]] [[vortex shedding|shedding]]) | | [[Roshko number|रोशको संख्या]] || Ro || <math> \mathrm{Ro} = {f L^{2}\over \nu} =\mathrm{St}\,\mathrm{Re} </math> || [[fluid dynamics]] (oscillating flow, [[vortex]] [[vortex shedding|shedding]]) | ||
|- | |- | ||
| [[Schmidt number]] || Sc || <math>\mathrm{Sc} = \frac{\nu}{D}</math> || [[mass transfer]] ([[viscosity|viscous]] over molecular [[diffusion]] rate)<ref>[http://www.ent.ohiou.edu/~hbwang/fluidynamics.htm Schmidt number] {{webarchive|url=https://web.archive.org/web/20100124213316/http://www.ent.ohiou.edu/~hbwang/fluidynamics.htm |date=2010-01-24 }}</ref> | | [[Schmidt number|श्मिट संख्या]] || Sc || <math>\mathrm{Sc} = \frac{\nu}{D}</math> || [[mass transfer]] ([[viscosity|viscous]] over molecular [[diffusion]] rate)<ref>[http://www.ent.ohiou.edu/~hbwang/fluidynamics.htm Schmidt number] {{webarchive|url=https://web.archive.org/web/20100124213316/http://www.ent.ohiou.edu/~hbwang/fluidynamics.htm |date=2010-01-24 }}</ref> | ||
|- | |- | ||
| [[Shape factor (boundary layer flow)| | | [[Shape factor (boundary layer flow)|आकार कारक]] || ''H'' || <math>H = \frac {\delta^*}{\theta}</math> || [[boundary layer flow]] (ratio of displacement thickness to momentum thickness) | ||
|- | |- | ||
| [[Sherwood number]] || Sh || <math>\mathrm{Sh} = \frac{K L}{D} </math> || [[mass transfer]] ([[forced convection]]; ratio of [[convection|convective]] to [[diffusion|diffusive]] mass transport) | | [[Sherwood number|शेरवुड संख्या]] || Sh || <math>\mathrm{Sh} = \frac{K L}{D} </math> || [[mass transfer]] ([[forced convection]]; ratio of [[convection|convective]] to [[diffusion|diffusive]] mass transport) | ||
|- | |- | ||
| [[Sommerfeld number]] || S || <math> \mathrm{S} = \left( \frac{r}{c} \right)^2 \frac {\mu N}{P}</math> || [[hydrodynamic lubrication]] (boundary [[lubrication]])<ref>{{cite thesis |last=Ekerfors |first=Lars O. |date=1985 |title=Boundary lubrication in screw-nut transmissions |type=PhD |publisher=Luleå University of Technology |url=http://ltu.diva-portal.org/smash/get/diva2:990021/FULLTEXT01.pdf |issn=0348-8373}}</ref> | | [[Sommerfeld number|सोमरफेल्ड संख्या]] || S || <math> \mathrm{S} = \left( \frac{r}{c} \right)^2 \frac {\mu N}{P}</math> || [[hydrodynamic lubrication]] (boundary [[lubrication]])<ref>{{cite thesis |last=Ekerfors |first=Lars O. |date=1985 |title=Boundary lubrication in screw-nut transmissions |type=PhD |publisher=Luleå University of Technology |url=http://ltu.diva-portal.org/smash/get/diva2:990021/FULLTEXT01.pdf |issn=0348-8373}}</ref> | ||
|- | |- | ||
| [[Stanton number]] || St || <math>\mathrm{St} = \frac{h}{c_p \rho V} = \frac{\mathrm{Nu}}{\mathrm{Re}\,\mathrm{Pr}} </math> || [[heat transfer]] and [[fluid dynamics]] (forced [[convection]]) | | [[Stanton number|स्टैंटन संख्या]] || St || <math>\mathrm{St} = \frac{h}{c_p \rho V} = \frac{\mathrm{Nu}}{\mathrm{Re}\,\mathrm{Pr}} </math> || [[heat transfer]] and [[fluid dynamics]] (forced [[convection]]) | ||
|- | |- | ||
| [[Stokes number]] || Stk or S<sub>k</sub> ||<math>\mathrm{Stk} = \frac{\tau U_o}{d_c}</math>|| [[Suspension (chemistry)|particles suspensions]] (ratio of characteristic [[time]] of particle to time of flow) | | [[Stokes number|स्टोक्स संख्या]] || Stk or S<sub>k</sub> ||<math>\mathrm{Stk} = \frac{\tau U_o}{d_c}</math>|| [[Suspension (chemistry)|particles suspensions]] (ratio of characteristic [[time]] of particle to time of flow) | ||
|- | |- | ||
| [[Strouhal number]] || St ||<math>\mathrm{St} = \frac{f L}{U}</math>|| [[Vortex shedding]] (ratio of characteristic oscillatory velocity to ambient flow velocity) | | [[Strouhal number|स्ट्रॉहल संख्या]] || St ||<math>\mathrm{St} = \frac{f L}{U}</math>|| [[Vortex shedding]] (ratio of characteristic oscillatory velocity to ambient flow velocity) | ||
|- | |- | ||
| [[Stuart number]] || N || <math> \mathrm{N} = \frac {B^2 L_{c} \sigma}{\rho U} = \frac{\mathrm{Ha}^2}{\mathrm{Re}} </math> || [[magnetohydrodynamics]] (ratio of [[electromagnetic force|electromagnetic]] to inertial forces) | | [[Stuart number|स्टुअर्ट संख्या]] || N || <math> \mathrm{N} = \frac {B^2 L_{c} \sigma}{\rho U} = \frac{\mathrm{Ha}^2}{\mathrm{Re}} </math> || [[magnetohydrodynamics]] (ratio of [[electromagnetic force|electromagnetic]] to inertial forces) | ||
|- | |- | ||
| [[Taylor number]] || Ta ||<math> \mathrm{Ta} = \frac{4\Omega^2 R^4}{\nu^2}</math>|| [[fluid dynamics]] (rotating fluid flows; inertial forces due to [[rotation]] of a [[fluid]] versus [[viscosity|viscous forces]]) | | [[Taylor number|टेलर संख्या]] || Ta ||<math> \mathrm{Ta} = \frac{4\Omega^2 R^4}{\nu^2}</math>|| [[fluid dynamics]] (rotating fluid flows; inertial forces due to [[rotation]] of a [[fluid]] versus [[viscosity|viscous forces]]) | ||
|- | |- | ||
| [[Ursell number]] || U ||<math>\mathrm{U} = \frac{H\, \lambda^2}{h^3}</math>|| [[wave]] mechanics (nonlinearity of [[ocean surface wave|surface gravity waves]] on a shallow fluid layer) | | [[Ursell number|उर्सेल संख्या]] || U ||<math>\mathrm{U} = \frac{H\, \lambda^2}{h^3}</math>|| [[wave]] mechanics (nonlinearity of [[ocean surface wave|surface gravity waves]] on a shallow fluid layer) | ||
|- | |- | ||
| [[Wallis parameter]] || ''j''{{i sup|∗}} ||<math>j^* = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2}</math>|| [[multiphase flow]]s (nondimensional [[superficial velocity]])<ref>{{Cite journal | last1 = Petritsch | first1 = G. | last2 = Mewes | first2 = D. | doi = 10.1016/S0029-5493(99)00005-9 | title = Experimental investigations of the flow patterns in the hot leg of a pressurized water reactor | journal = Nuclear Engineering and Design | volume = 188 | pages = 75–84 | year = 1999 }}</ref> | | [[Wallis parameter|वालिस पैरामीटर]] || ''j''{{i sup|∗}} ||<math>j^* = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2}</math>|| [[multiphase flow]]s (nondimensional [[superficial velocity]])<ref>{{Cite journal | last1 = Petritsch | first1 = G. | last2 = Mewes | first2 = D. | doi = 10.1016/S0029-5493(99)00005-9 | title = Experimental investigations of the flow patterns in the hot leg of a pressurized water reactor | journal = Nuclear Engineering and Design | volume = 188 | pages = 75–84 | year = 1999 }}</ref> | ||
|- | |- | ||
| [[Weber number]] || We ||<math>\mathrm{We} = \frac{\rho v^2 l}{\sigma}</math>|| [[multiphase flow]] (strongly curved surfaces; ratio of [[inertia]] to [[surface tension]]) | | [[Weber number|वेबर संख्या]] || We ||<math>\mathrm{We} = \frac{\rho v^2 l}{\sigma}</math>|| [[multiphase flow]] (strongly curved surfaces; ratio of [[inertia]] to [[surface tension]]) | ||
|- | |- | ||
| [[Weissenberg number]] || Wi ||<math>\mathrm{Wi} = \dot{\gamma} \lambda </math>|| [[viscoelastic]] flows ([[shear rate]] times the relaxation time)<ref>{{cite journal |last1=Smith |first1=Douglas E. |last2=Babcock |first2=Hazen P. |last3=Chu |first3=Steven |title=Single-Polymer Dynamics in Steady Shear Flow |journal=Science |date=12 March 1999 |volume=283 |issue=5408 |pages=1724–1727 |doi=10.1126/science.283.5408.1724 |publisher=American Association for the Advancement of Science |pmid=10073935 |bibcode=1999Sci...283.1724S |url=http://physics.ucsd.edu/~des/Shear1999.pdf |archive-url=https://web.archive.org/web/20061101152745/http://physics.ucsd.edu/~des/Shear1999.pdf |archive-date=1 November 2011}}</ref> | | [[Weissenberg number|वीसेंबर्ग संख्या]] || Wi ||<math>\mathrm{Wi} = \dot{\gamma} \lambda </math>|| [[viscoelastic]] flows ([[shear rate]] times the relaxation time)<ref>{{cite journal |last1=Smith |first1=Douglas E. |last2=Babcock |first2=Hazen P. |last3=Chu |first3=Steven |title=Single-Polymer Dynamics in Steady Shear Flow |journal=Science |date=12 March 1999 |volume=283 |issue=5408 |pages=1724–1727 |doi=10.1126/science.283.5408.1724 |publisher=American Association for the Advancement of Science |pmid=10073935 |bibcode=1999Sci...283.1724S |url=http://physics.ucsd.edu/~des/Shear1999.pdf |archive-url=https://web.archive.org/web/20061101152745/http://physics.ucsd.edu/~des/Shear1999.pdf |archive-date=1 November 2011}}</ref> | ||
|- | |- | ||
| [[Womersley number]] || <math>\alpha</math> ||<math>\alpha = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2}</math>|| [[biofluid mechanics]] (continuous and pulsating flows; ratio of [[pulsatile flow]] [[frequency]] to [[viscosity|viscous effects]])<ref>{{cite web |author1=Bookbinder |author2=Engler |author3=Hong |author4=Miller |title=Comparison of Flow Measure Techniques during Continuous and Pulsatile Flow |url=https://www.seas.upenn.edu/~belab/LabProjects/2001/be310s01m2.html |website=2001 BE Undergraduate Projects |publisher=Department of Bioengineering, University of Pennsylvania |date=May 2001}}</ref> | | [[Womersley number|वोमरस्ले संख्या]] || <math>\alpha</math> ||<math>\alpha = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2}</math>|| [[biofluid mechanics]] (continuous and pulsating flows; ratio of [[pulsatile flow]] [[frequency]] to [[viscosity|viscous effects]])<ref>{{cite web |author1=Bookbinder |author2=Engler |author3=Hong |author4=Miller |title=Comparison of Flow Measure Techniques during Continuous and Pulsatile Flow |url=https://www.seas.upenn.edu/~belab/LabProjects/2001/be310s01m2.html |website=2001 BE Undergraduate Projects |publisher=Department of Bioengineering, University of Pennsylvania |date=May 2001}}</ref> | ||
|- | |- | ||
| [[Zel'dovich number]] || <math>\beta</math> || <math>\beta = \frac{E}{RT_f} \frac{T_f-T_o}{T_f}</math> || [[fluid dynamics]], [[Combustion]] (Measure of [[activation energy]]) | | [[Zel'dovich number|ज़ेल्डोविच संख्या]] || <math>\beta</math> || <math>\beta = \frac{E}{RT_f} \frac{T_f-T_o}{T_f}</math> || [[fluid dynamics]], [[Combustion]] (Measure of [[activation energy]]) | ||
|} | |} | ||
Revision as of 13:13, 17 August 2023
अभिलक्षणिक संख्याएँ आयामहीन मात्राओं का एक समूह हैं जो तरल पदार्थों के व्यवहार और उनके प्रवाह के साथ-साथ अन्य परिवहन घटनाओं के विश्लेषण में महत्वपूर्ण भूमिका निभाते हैं।[1] उनमें रेनॉल्ड्स संख्या और मैक संख्याएं शामिल हैं, जो द्रव के सापेक्ष परिमाण और घनत्व, चिपचिपाहट, ध्वनि की गति और वेग गति जैसी भौतिक प्रणाली विशेषताओं के अनुपात का वर्णन करती हैं।
किसी वास्तविक स्थिति (उदाहरण के लिए एक विमान) की तुलना छोटे पैमाने के मॉडल से करने के लिए महत्वपूर्ण विशेषता संख्याओं को समान रखना आवश्यक है। इन नंबरों के नाम और सूत्रीकरण आईएसओ 31-12 और आईएसओ 80000-11 में मानकीकृत किए गए थे।
परिवहन परिघटना में विवर्तनिक संख्याएँ
vs. | Inertial | Viscous | Thermal | Mass |
---|---|---|---|---|
Inertial | vd | Re | Pe | PeAB |
Viscous | Re−1 | μ/ρ, ν | Pr | Sc |
Thermal | Pe−1 | Pr−1 | α | Le |
Mass | PeAB−1 | Sc−1 | Le−1 | D |
द्रव यांत्रिकी में आयामहीन संख्याएँ कैसे उत्पन्न होती हैं, इसके एक सामान्य उदाहरण के रूप में, द्रव्यमान संरक्षण, संवेग संरक्षण और ऊर्जा संरक्षण की परिवहन घटनाओं में उत्कृष्ट संख्याओं का मुख्य रूप से प्रत्येक परिवहन तंत्र में प्रभावी प्रसार के अनुपात द्वारा विश्लेषण किया जाता है। छह आयामहीन मात्राएँ जड़ता, श्यानता, ऊष्मा चालन और विसरणीय जन परिवहन की विभिन्न घटनाओं की सापेक्ष शक्ति देती हैं। (तालिका में, विकर्ण मात्राओं के लिए सामान्य प्रतीक देते हैं, और दी गई आयाम रहित संख्या शीर्ष पंक्ति की मात्रा पर बाएं स्तंभ की मात्रा का अनुपात है; उदाहरण के लिए Re = जड़त्व बल/श्यान बल = vd/ν)। इन्हीं मात्राओं को वैकल्पिक रूप से विशिष्ट समय, लंबाई या ऊर्जा पैमानों के अनुपात के रूप में व्यक्त किया जा सकता है। ऐसे फॉर्म आमतौर पर व्यवहार में कम उपयोग किए जाते हैं, लेकिन विशेष अनुप्रयोगों में अंतर्दृष्टि प्रदान कर सकते हैं।
बूंद निर्माण
vs. | Momentum | Viscosity | Surface tension | Gravity | Kinetic energy |
---|---|---|---|---|---|
Momentum | ρvd | Re | Fr | ||
Viscosity | Re−1 | ρν, μ | Oh, Ca, La−1 | Ga−1 | |
Surface tension | Oh−1, Ca−1, La | σ | Bo−1 | We−1 | |
Gravity | Fr−1 | Ga | Bo | g | |
Kinetic energy | We | ρv2d |
बूंदों का निर्माण अधिकतर गति, श्यान बल और सतह तनाव पर निर्भर करता है।[2] उदाहरण के लिए, इंकजेट मुद्रण में, बहुत अधिक ओहनेसॉर्ज संख्या वाली स्याही ठीक से जेट नहीं होगी, और बहुत कम ओहनेसॉर्ज संख्या वाली स्याही कई उपग्रह बूंदों के साथ जेट होगी।[3] सभी मात्रा अनुपातों को स्पष्ट रूप से नामित नहीं किया गया है, हालांकि प्रत्येक अनाम अनुपात को दो अन्य नामित आयामहीन संख्याओं के उत्पाद के रूप में व्यक्त किया जा सकता है।
सूची
सभी संख्याएँ [[आयामहीन मात्राएँ]] हैं। आयामहीन मात्राओं की विस्तृत सूची के लिए अन्य लेख देखें। द्रव यांत्रिकी के लिए कुछ महत्व की कुछ आयामहीन मात्राएँ नीचे दी गई हैं:
संदर्भ
- ↑ "ISO 80000-1:2009". International Organization for Standardization. Retrieved 2019-09-15.
A.3.2 Some combinations of dimension one of quantities, such as those occurring in the description of transport phenomena, are called characteristic numbers and carry the term "number" in their names.
- ↑ Dijksman, J. Frits; Pierik, Anke (2012). "Dynamics of Piezoelectric Print-Heads". In Hutchings, Ian M.; Martin, Graham D. (eds.). डिजिटल निर्माण के लिए इंकजेट प्रौद्योगिकी. John Wiley & Sons. pp. 45–86. doi:10.1002/9781118452943.ch3. ISBN 9780470681985.
- ↑ Derby, Brian (2010). "Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution" (PDF). Annual Review of Materials Research. 40 (1): 395–414. Bibcode:2010AnRMS..40..395D. doi:10.1146/annurev-matsci-070909-104502. ISSN 1531-7331. S2CID 138001742.
- ↑ Bhattacharje, Subrata; Grosshandler, William L. (1988). Jacobs, Harold R. (ed.). The formation of wall jet near a high temperature wall under microgravity environment. National Heat Transfer Conference. Vol. 1. Houston, TX: American Society of Mechanical Engineers. pp. 711–716. Bibcode:1988nht.....1..711B.
- ↑ 5.0 5.1 "Table of Dimensionless Numbers" (PDF). Retrieved 2009-11-05.
- ↑ Mahajan, Milind P.; Tsige, Mesfin; Zhang, Shiyong; Alexander, J. Iwan D.; Taylor, P. L.; Rosenblatt, Charles (10 January 2000). "Collapse Dynamics of Liquid Bridges Investigated by Time-Varying Magnetic Levitation" (PDF). Physical Review Letters. 84 (2): 338–341. Bibcode:2000PhRvL..84..338M. doi:10.1103/PhysRevLett.84.338. PMID 11015905. Archived from the original (PDF) on 5 March 2012.
- ↑ "Home". OnePetro. 2015-05-04. Retrieved 2015-05-08.
- ↑ Schetz, Joseph A. (1993). Boundary Layer Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc. pp. 132–134. ISBN 0-13-086885-X.
- ↑ "Fanning friction factor". Archived from the original on 2013-12-20. Retrieved 2015-06-25.
- ↑ Tan, R. B. H.; Sundar, R. (2001). "On the froth–spray transition at multiple orifices". Chemical Engineering Science. 56 (21–22): 6337. Bibcode:2001ChEnS..56.6337T. doi:10.1016/S0009-2509(01)00247-0.
- ↑ Stewart, David (February 2003). "The Evaluation of Wet Gas Metering Technologies for Offshore Applications, Part 1 – Differential Pressure Meters" (PDF). Flow Measurement Guidance Note. Glasgow, UK: National Engineering Laboratory. 40. Archived from the original (PDF) on 17 November 2006.
- ↑ Science Applications International Corporation (2001). Performing Quality Flow Measurements at Mine Sites. Washington, DC: U.S. Environmental Protection Agency. EPA/600/R-01/043.
- ↑ Richardson number Archived 2015-03-02 at the Wayback Machine
- ↑ Schmidt number Archived 2010-01-24 at the Wayback Machine
- ↑ Ekerfors, Lars O. (1985). Boundary lubrication in screw-nut transmissions (PDF) (PhD). Luleå University of Technology. ISSN 0348-8373.
- ↑ Petritsch, G.; Mewes, D. (1999). "Experimental investigations of the flow patterns in the hot leg of a pressurized water reactor". Nuclear Engineering and Design. 188: 75–84. doi:10.1016/S0029-5493(99)00005-9.
- ↑ Smith, Douglas E.; Babcock, Hazen P.; Chu, Steven (12 March 1999). "Single-Polymer Dynamics in Steady Shear Flow" (PDF). Science. American Association for the Advancement of Science. 283 (5408): 1724–1727. Bibcode:1999Sci...283.1724S. doi:10.1126/science.283.5408.1724. PMID 10073935. Archived from the original (PDF) on 1 November 2011.
{{cite journal}}
:|archive-date=
/|archive-url=
timestamp mismatch (help) - ↑ Bookbinder; Engler; Hong; Miller (May 2001). "Comparison of Flow Measure Techniques during Continuous and Pulsatile Flow". 2001 BE Undergraduate Projects. Department of Bioengineering, University of Pennsylvania.
- ट्रोपिया, सी.; यारिन, ए.एल.; फास, जे.एफ. (2007). प्रायोगिक द्रव यांत्रिकी की स्प्रिंगर हैंडबुक. स्प्रिंगर-वेरलाग.