द्रव यांत्रिकी में आयामहीन संख्याएँ: Difference between revisions

From Vigyanwiki
No edit summary
Line 39: Line 39:
| style="background:silver;"| [[Mass diffusivity|''D'']]
| style="background:silver;"| [[Mass diffusivity|''D'']]
|}
|}
'''द्रव यांत्रिकी में आयामहीन संख्याएँ''' कैसे उत्पन्न होती हैं, इसके एक सामान्य उदाहरण के रूप में, द्रव्यमान संरक्षण, संवेग संरक्षण और ऊर्जा संरक्षण की परिवहन घटनाओं में उत्कृष्ट संख्याओं का मुख्य रूप से प्रत्येक परिवहन तंत्र में प्रभावी प्रसार के अनुपात द्वारा विश्लेषण किया जाता है। छह आयामहीन मात्राएँ [[जड़ता]], श्यानता, ऊष्मा चालन और विसरणीय जन परिवहन की विभिन्न घटनाओं की सापेक्ष शक्ति देती हैं। (तालिका में, विकर्ण मात्राओं के लिए सामान्य प्रतीक देते हैं, और दी गई आयाम रहित संख्या शीर्ष पंक्ति की मात्रा पर बाएं स्तंभ की मात्रा का अनुपात है; उदाहरण के लिए Re = जड़त्व बल/श्यान बल = vd/ν)। इन्हीं मात्राओं को वैकल्पिक रूप से विशिष्ट समय, लंबाई या ऊर्जा पैमानों के अनुपात के रूप में व्यक्त किया जा सकता है। ऐसे प्रारूप सामान्यतः व्यवहार में कम उपयोग किए जाते हैं, लेकिन विशेष अनुप्रयोगों में अंतर्दृष्टि प्रदान कर सकते हैं।
'''द्रव यांत्रिकी में आयामहीन संख्याएँ''' कैसे उत्पन्न होती हैं, इसके एक सामान्य उदाहरण के रूप में, द्रव्यमान संरक्षण, संवेग संरक्षण और ऊर्जा संरक्षण की परिवहन घटनाओं में उत्कृष्ट संख्याओं का मुख्य रूप से प्रत्येक परिवहन तंत्र में प्रभावी प्रसार के अनुपात द्वारा विश्लेषण किया जाता है। छह आयामहीन संख्याएं [[जड़ता]], श्यानता, ऊष्मा चालन और विसरणीय जन परिवहन की विभिन्न घटनाओं की सापेक्ष शक्ति देती हैं। (तालिका में, विकर्ण मात्राओं के लिए सामान्य प्रतीक देते हैं, और दी गई आयाम रहित संख्या शीर्ष पंक्ति की मात्रा पर बाएं स्तंभ की मात्रा का अनुपात है; उदाहरण के लिए Re = जड़त्व बल/श्यान बल = vd/ν)। इन्हीं मात्राओं को वैकल्पिक रूप से विशिष्ट समय, लंबाई या ऊर्जा पैमानों के अनुपात के रूप में व्यक्त किया जा सकता है। ऐसे प्रारूप सामान्यतः व्यवहार में कम उपयोग किए जाते हैं, लेकिन विशेष अनुप्रयोगों में अंतर्दृष्टि प्रदान कर सकते हैं।
{{clear}}{{clear}}
{{clear}}{{clear}}



Revision as of 09:35, 22 August 2023

अभिलक्षणिक संख्याएँ आयामहीन मात्राओं का एक समूह हैं जो तरल पदार्थों के व्यवहार और उनके प्रवाह के साथ-साथ अन्य परिवहन घटनाओं के विश्लेषण में महत्वपूर्ण भूमिका निभाती हैं।[1] इनमें रेनॉल्ड्स संख्या और मैक संख्याएं सम्मलित होती हैं, जो द्रव के सापेक्ष परिमाण और घनत्व, श्यानता, ध्वनि की गति और प्रवाह गति जैसी भौतिक प्रणाली विशेषताओं के अनुपात का वर्णन करती हैं।

किसी वास्तविक स्थिति (उदाहरण के लिए एक विमान) की समानता छोटे पैमाने के मॉडल से करने के लिए महत्वपूर्ण विशेषता संख्याओं को समान रखना आवश्यक है। इन संख्याएँ के नाम और सूत्रीकरण आईएसओ 31-12 और आईएसओ 80000-11 में मानकीकृत किए गए थे।

परिवहन परिघटना में विवर्तनिक संख्याएँ

परिवहन घटना में आयामहीन संख्याएँ
vs. जड़त्वीय श्यानता तापीय द्रव्यमान
जड़त्वीय vd Re Pe PeAB
श्यानता Re−1 μ/ρ, ν Pr Sc
तापीय Pe−1 Pr−1 α Le
द्रव्यमान PeAB−1 Sc−1 Le−1 D

द्रव यांत्रिकी में आयामहीन संख्याएँ कैसे उत्पन्न होती हैं, इसके एक सामान्य उदाहरण के रूप में, द्रव्यमान संरक्षण, संवेग संरक्षण और ऊर्जा संरक्षण की परिवहन घटनाओं में उत्कृष्ट संख्याओं का मुख्य रूप से प्रत्येक परिवहन तंत्र में प्रभावी प्रसार के अनुपात द्वारा विश्लेषण किया जाता है। छह आयामहीन संख्याएं जड़ता, श्यानता, ऊष्मा चालन और विसरणीय जन परिवहन की विभिन्न घटनाओं की सापेक्ष शक्ति देती हैं। (तालिका में, विकर्ण मात्राओं के लिए सामान्य प्रतीक देते हैं, और दी गई आयाम रहित संख्या शीर्ष पंक्ति की मात्रा पर बाएं स्तंभ की मात्रा का अनुपात है; उदाहरण के लिए Re = जड़त्व बल/श्यान बल = vd/ν)। इन्हीं मात्राओं को वैकल्पिक रूप से विशिष्ट समय, लंबाई या ऊर्जा पैमानों के अनुपात के रूप में व्यक्त किया जा सकता है। ऐसे प्रारूप सामान्यतः व्यवहार में कम उपयोग किए जाते हैं, लेकिन विशेष अनुप्रयोगों में अंतर्दृष्टि प्रदान कर सकते हैं।

बूंद निर्माण

बूंदों के निर्माण में आयामहीन संख्याएँ
vs. संवेग श्यानता सतह तनाव गुरुत्वाकर्षण गतिज ऊर्जा
संवेग ρvd Re Fr
श्यानता Re−1 ρν, μ Oh, Ca, La−1 Ga−1
सतह तनाव Oh−1, Ca−1, La σ Bo−1 We−1
गुरुत्वाकर्षण Fr−1 Ga Bo g
गतिज ऊर्जा We ρv2d

बूंदों का निर्माण अधिकतर गति, श्यान बल और सतह तनाव पर निर्भर करता है।[2] उदाहरण के लिए, इंकजेट मुद्रण में, बहुत अधिक ओहनेसॉर्ज संख्या वाली स्याही ठीक से छिड़काव नहीं होगी, और बहुत कम ओहनेसॉर्ज संख्या वाली स्याही कई सूक्ष्म बूंदों के साथ छिड़काव होगी।[3] सभी मात्रा अनुपातों को स्पष्ट रूप से नामित नहीं किया गया है, चूंकि प्रत्येक अनाम अनुपात को दो अन्य नामित आयामहीन संख्याओं के उत्पाद के रूप में व्यक्त किया जा सकता है।

सूची

सभी संख्याएँ [[आयामहीन मात्राएँ]] हैं। आयामहीन मात्राओं की विस्तृत सूची के लिए अन्य लेख देखें। द्रव यांत्रिकी के लिए कुछ महत्व की कुछ आयामहीन मात्राएँ नीचे दी गई हैं:

नाम मानक प्रतीक परिभाषा उपयोग का क्षेत्र
आर्किमिडीज़ संख्या Ar द्रव यांत्रिकी (घनत्व अंतर के कारण तरल पदार्थ की गति)
एटवुड नंबर A द्रव यांत्रिकी (घनत्व अंतर के कारण द्रव मिश्रण में अस्थिरता की प्रारंभ)
बेजान संख्या
(द्रव यांत्रिकी)
Be द्रव यांत्रिकी (एक चैनल के साथ आयामहीन दबाव बूँद)[4]
बिंघम संख्या Bm द्रव यांत्रिकी, रियोलॉजी (उपज तनाव और श्यान तनाव का अनुपात)[5]
बायोट संख्या Bi ऊष्मा स्थानांतरण (सतह के प्रति ठोस पदार्थों की आयतन चालकता)
ब्लेक संख्या Bl or B भूविज्ञान, द्रव यांत्रिकी, झरझरा पदार्थ (झरझरा पदार्थ के माध्यम से द्रव प्रवाह में श्यान बलों पर जड़त्व)
बांड संख्या Bo भूविज्ञान, द्रव यांत्रिकी, झरझरा पदार्थ (उत्प्लावकता विरूद्ध केशिका बल, इओटवोस संख्या के समान) [6]
ब्रिंकमैन नंबर Br ऊष्मा स्थानांतरण, द्रव यांत्रिकी (दीवार से श्यान द्रव तक चालन)
ब्राउनेल-काट्ज़ संख्या NBK द्रव यांत्रिकी (केशिका संख्या और बांड संख्या का संयोजन) [7]
कैपिलरी संख्या Ca झरझरा पदार्थ, द्रव यांत्रिकी (श्यान द्रव के प्रति सतह तनाव)
चन्द्रशेखर संख्या C हाइड्रोमैग्नेटिक्स (लोरेंत्ज़ बल के प्रति श्यानता)
कोलबर्न जे कारक JM, JH, JD अशांति; ऊष्मा, द्रव्यमान, और संवेग स्थानांतरण (आयाम रहित स्थानांतरण गुणांक)
दमकोहलर संख्या Da रसायन शास्त्र (प्रतिक्रिया समय स्केल के प्रति निवास समय)
डार्सी घर्षण कारक Cf or fD द्रव यांत्रिकी (पाइप में घर्षण के कारण दबाव हानि का अंश; फैनिंग घर्षण कारक)
डीन संख्या D अशांत प्रवाह (घुमावदार नलिकाओं में भंवर)
दबोरा संख्या De रियोलॉजी (विस्कोइलास्टिक तरल पदार्थ)
ड्रैग गुणांक cd वैमानिकी, द्रव गतिकी (द्रव गति का प्रतिरोध)
एकर्ट संख्या Ec संवहनी ताप स्थानांतरण (ऊर्जा के अपव्यय की विशेषता है; गतिज ऊर्जा और एन्थैल्पी का अनुपात)
इओटवोस संख्या Eo द्रव यांत्रिकी ( बुलबुले या बूंदों का आकार)
एरिक्सन संख्या Er द्रव गतिकी (तरल स्फ़टिक ल प्रवाह व्यवहार; लोचदार बलों पर श्यानता)
यूलर संख्या Eu हाइड्रोडायनामिक्स (धारा दबाव के प्रति जड़त्व बल)
अतिरिक्त तापमान गुणांक ऊष्मा हस्तांतरण, द्रव गतिशीलता (आंतरिक ऊर्जा के प्रति गतिज ऊर्जा में परिवर्तन) [8]
फैनिंग घर्षण कारक f द्रव यांत्रिकी (पाइप में घर्षण के कारण दबाव हानि का अंश;; 1/4 डार्सी घर्षण कारक)[9]
घृणित संख्या Fr द्रव यांत्रिकी (तरंग और सतह व्यवहार; निकाय की जड़ता और गुरुत्वाकर्षण बलों का अनुपात)
गैलीली संख्या Ga द्रव यांत्रिकी (श्यानता बलों पर गुरुत्वाकर्षण)
गॉर्टलर नंबर G द्रव गतिकी (अवतल दीवार के साथ सीमा परत प्रवाह)
ग्रेत्ज़ संख्या Gz ऊष्मा हस्तांतरण, द्रव यांत्रिकी (एक नाली के माध्यम से लामिना का प्रवाह; बड़े पैमाने पर द्रव्यमान स्थानांतरण में भी उपयोग किया जाता है)
ग्राशोफ़ संख्या Gr ऊष्मा हस्तांतरण, प्राकृतिक संवहन (श्यानता बल के लिए उत्क्षेप का अनुपात)
हार्टमैन संख्या Ha मैग्नेटोहाइड्रोडायनामिक्स (लोरेंत्ज़ का श्यानता बलों से अनुपात)
हेगन संख्या Hg ऊष्मा हस्तांतरण (उत्प्लावकता संवहन में श्यानता बल के लिए बलपूर्वक संवहन का अनुपात)
इरिबैरेन संख्या Ir तरंग यांत्रिकी (ढलान पर सतह गुरुत्वाकर्षण तरंगों को तोड़ना)
जैकब संख्या Ja ऊष्मा स्थानांतरण (चरण परिवर्तन के समय संवेदी ऊष्मा और गुप्त ऊष्मा का अनुपात)
कार्लोविट्ज़ संख्या Ka अशांत दहन (विशेषता प्रवाह समय गुना लौ खिंचाव दर)
कपित्जा संख्या Ka द्रव यांत्रिकी (तरल की पतली फिल्म झुकी हुई सतहों से नीचे बहती है)
क्यूलेगन-बढ़ई संख्या KC द्रव गतिकी ( दोलनशील द्रव प्रवाह में ब्लफ़ ऑब्जेक्ट के लिए जड़त्व के लिए ड्रैग बल का अनुपात)
नुडसेन संख्या Kn गैस गतिकी (प्रतिनिधि भौतिक लंबाई पैमाने पर आणविक माध्य मुक्त पथ लंबाई का अनुपात)
कुटाटेलडेज़ संख्या Ku द्रव यांत्रिकी (काउंटर-करंट दो-चरण प्रवाह)[10]
लाप्लास संख्या La द्रव गतिकी ( अमिश्रणीय तरल पदार्थों के भीतर मुक्त संवहन; सतह तनाव और संवेग-परिवहन का अनुपात)
लुईस संख्या Le ऊष्मा और द्रव्यमान स्थानांतरण (तापीय से द्रव्यमान प्रसार का अनुपात)
लिफ्ट गुणांक CL वायुगतिकी (हमले के एक निश्चित कोण पर एयरफ़ोइल से उपलब्ध लिफ्ट)
लॉकहार्ट-मार्टिनेली पैरामीटर दो-चरण प्रवाह (गीली गैसों का प्रवाह; तरल अंश)[11]
मैक संख्या M or Ma गैस गतिशीलता (संपीड़ित प्रवाह; आयामहीन वेग)
मैनिंग खुरदरापन गुणांक n खुला चैनल प्रवाह (गुरुत्वाकर्षण द्वारा संचालित प्रवाह)[12]
मारांगोनी संख्या Mg द्रव यांत्रिकी (मारंगोनी प्रवाह; श्यानता बलों पर थर्मल सतह तनाव बल)
मार्कस्टीन संख्या Ma अशांत प्रवाह, दहन (मार्कस्टीन की लंबाई से लेमिनर लौ की मोटाई तक)
मॉर्टन संख्या Mo द्रव गतिकी ( बुलबुला/बूंद आकार का निर्धारण)
नुसेल्ट संख्या Nu ऊष्मा स्थानांतरण (बलपूर्वक संवहन; संवहन से प्रवाहकीय ऊष्मा स्थानांतरण का अनुपात)
ओहनेसोरगे संख्या Oh द्रव गतिकी (तरल पदार्थों का परमाणुकरण, मारांगोनी प्रवाह)
पेकलेट संख्या Pe or द्रव गतिकी (आण्विक विसारक परिवहन दर पर विशेषण परिवहन दर का अनुपात), ऊष्मा का हस्तांतरण (थर्मल विसारक परिवहन दर पर विशेषण परिवहन दर का अनुपात)
प्रैंडटल संख्या Pr ऊष्मा स्थानांतरण (ऊष्मा प्रसार दर पर श्यानता प्रसार दर का अनुपात)
दबाव गुणांक CP वायुगतिकी, जलगतिकी (एयरफ़ोइल पर एक बिंदु पर अनुभव किया गया दबाव; आयाम रहित दबाव चर)
रेले संख्या Ra ऊष्मा स्थानांतरण (मुक्त संवहन में श्यानता के प्रति उत्प्लावकता)
रेनॉल्ड्स संख्या Re द्रव यांत्रिकी (द्रव जड़त्वीय और श्यानता बलों का अनुपात)[5]
रिचर्डसन संख्या Ri द्रव गतिशीलता (प्रवाह स्थिरता पर उत्प्लावकता का प्रभाव; गतिज ऊर्जा पर क्षमता का अनुपात) [13]
रोशको संख्या Ro द्रव गतिकी (दोलनशील प्रवाह, भंवर बहाव)
श्मिट संख्या Sc द्रव्यमान स्थानांतरण (आण्विक प्रसार दर पर श्यानता) [14]
आकार कारक H सीमा परत प्रवाह (विस्थापन मोटाई और संवेग मोटाई का अनुपात)
शेरवुड संख्या Sh द्रव्यमान स्थानांतरण (बलपूर्वक संवहन; संवहन और प्रसार द्रव्यमान परिवहन का अनुपात)
सोमरफेल्ड संख्या S हाइड्रोडायनामिक स्नेहन (सीमा स्नेहन)[15]
स्टैंटन संख्या St ऊष्मा हस्तांतरण और द्रव गतिशीलता (बलपूर्वक संवहन)
स्टोक्स संख्या Stk or Sk कण निलंबन (कण के विशिष्ट समय और प्रवाह के समय का अनुपात)
स्ट्रॉहल संख्या St भंवर बहाव (परिवेशीय प्रवाह वेग के लिए विशेषता दोलन वेग का अनुपात)
स्टुअर्ट संख्या N मैग्नेटोहाइड्रोडायनामिक्स (जड़त्वीय बलों के लिए विद्युत चुम्बकीय का अनुपात)
टेलर संख्या Ta द्रव गतिकी (घूर्णन द्रव प्रवाह; द्रव के घूर्णन के कारण जड़त्वीय बल के प्रति श्यानता बल)
उर्सेल संख्या U तरंग यांत्रिकी (उथली द्रव परत पर सतह गुरुत्वाकर्षण तरंगों की गैर-रैखिकता)
वालिस पैरामीटर j बहुचरण प्रवाह (अआयामी सतही वेग)[16]
वेबर संख्या We बहुचरण प्रवाह (दृढ़ता से घुमावदार सतह; जड़त्व और सतह तनाव का अनुपात)
वीसेंबर्ग संख्या Wi विस्कोइलास्टिक प्रवाह (कतरनी दर विश्राम समय का गुना)[17]
वोमरस्ले संख्या जैव द्रव यांत्रिकी (निरंतर और स्पंदित प्रवाह; स्पंदनशील प्रवाह आवृत्ति और चिपचिपे प्रभावों का अनुपात)[18]
ज़ेल्डोविच संख्या द्रव गतिकी, दहन (सक्रियण ऊर्जा का माप)


संदर्भ

  1. "ISO 80000-1:2009". International Organization for Standardization. Retrieved 2019-09-15. A.3.2 Some combinations of dimension one of quantities, such as those occurring in the description of transport phenomena, are called characteristic numbers and carry the term "number" in their names.
  2. Dijksman, J. Frits; Pierik, Anke (2012). "Dynamics of Piezoelectric Print-Heads". In Hutchings, Ian M.; Martin, Graham D. (eds.). डिजिटल निर्माण के लिए इंकजेट प्रौद्योगिकी. John Wiley & Sons. pp. 45–86. doi:10.1002/9781118452943.ch3. ISBN 9780470681985.
  3. Derby, Brian (2010). "Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution" (PDF). Annual Review of Materials Research. 40 (1): 395–414. Bibcode:2010AnRMS..40..395D. doi:10.1146/annurev-matsci-070909-104502. ISSN 1531-7331. S2CID 138001742.
  4. Bhattacharje, Subrata; Grosshandler, William L. (1988). Jacobs, Harold R. (ed.). The formation of wall jet near a high temperature wall under microgravity environment. National Heat Transfer Conference. Vol. 1. Houston, TX: American Society of Mechanical Engineers. pp. 711–716. Bibcode:1988nht.....1..711B.
  5. 5.0 5.1 "Table of Dimensionless Numbers" (PDF). Retrieved 2009-11-05.
  6. Mahajan, Milind P.; Tsige, Mesfin; Zhang, Shiyong; Alexander, J. Iwan D.; Taylor, P. L.; Rosenblatt, Charles (10 January 2000). "Collapse Dynamics of Liquid Bridges Investigated by Time-Varying Magnetic Levitation" (PDF). Physical Review Letters. 84 (2): 338–341. Bibcode:2000PhRvL..84..338M. doi:10.1103/PhysRevLett.84.338. PMID 11015905. Archived from the original (PDF) on 5 March 2012.
  7. "Home". OnePetro. 2015-05-04. Retrieved 2015-05-08.
  8. Schetz, Joseph A. (1993). Boundary Layer Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc. pp. 132–134. ISBN 0-13-086885-X.
  9. "Fanning friction factor". Archived from the original on 2013-12-20. Retrieved 2015-06-25.
  10. Tan, R. B. H.; Sundar, R. (2001). "On the froth–spray transition at multiple orifices". Chemical Engineering Science. 56 (21–22): 6337. Bibcode:2001ChEnS..56.6337T. doi:10.1016/S0009-2509(01)00247-0.
  11. Stewart, David (February 2003). "The Evaluation of Wet Gas Metering Technologies for Offshore Applications, Part 1 – Differential Pressure Meters" (PDF). Flow Measurement Guidance Note. Glasgow, UK: National Engineering Laboratory. 40. Archived from the original (PDF) on 17 November 2006.
  12. Science Applications International Corporation (2001). Performing Quality Flow Measurements at Mine Sites. Washington, DC: U.S. Environmental Protection Agency. EPA/600/R-01/043.
  13. Richardson number Archived 2015-03-02 at the Wayback Machine
  14. Schmidt number Archived 2010-01-24 at the Wayback Machine
  15. Ekerfors, Lars O. (1985). Boundary lubrication in screw-nut transmissions (PDF) (PhD). Luleå University of Technology. ISSN 0348-8373.
  16. Petritsch, G.; Mewes, D. (1999). "Experimental investigations of the flow patterns in the hot leg of a pressurized water reactor". Nuclear Engineering and Design. 188: 75–84. doi:10.1016/S0029-5493(99)00005-9.
  17. Smith, Douglas E.; Babcock, Hazen P.; Chu, Steven (12 March 1999). "Single-Polymer Dynamics in Steady Shear Flow" (PDF). Science. American Association for the Advancement of Science. 283 (5408): 1724–1727. Bibcode:1999Sci...283.1724S. doi:10.1126/science.283.5408.1724. PMID 10073935. Archived from the original (PDF) on 1 November 2011. {{cite journal}}: |archive-date= / |archive-url= timestamp mismatch (help)
  18. Bookbinder; Engler; Hong; Miller (May 2001). "Comparison of Flow Measure Techniques during Continuous and Pulsatile Flow". 2001 BE Undergraduate Projects. Department of Bioengineering, University of Pennsylvania.
  • ट्रोपिया, सी.; यारिन, ए.एल.; फास, जे.एफ. (2007). प्रायोगिक द्रव यांत्रिकी की स्प्रिंगर हैंडबुक. स्प्रिंगर-वेरलाग.