आदर्श गैस: Difference between revisions

From Vigyanwiki
No edit summary
Line 25: Line 25:
|अपूर्ण, या गैर-आदर्श
|अपूर्ण, या गैर-आदर्श
|| {{No|''T'' and ''P''-dependent}} || {{No}}
|| {{No|''T'' and ''P''-dependent}} || {{No}}
|}
{| class='wikitable'
|-
! Nomenclature 1
! Nomenclature 2
! Heat capacity <br/>at constant <math>V</math>, <math>C_V</math>, <br/>or constant <math>P</math>, <math>C_P</math>
! Ideal-gas law <br/><math>PV = nRT</math> and <br/><math>C_P - C_V = nR</math>
|-
| Calorically perfect || Perfect || {{Yes|Constant}} || {{Yes}}
|-
| Thermally perfect || Semi-perfect || {{Partial|''T''-dependent}} || {{Yes}}
|-
| || Ideal  || {{Partial|May or may not be ''T'' -dependent}} || {{Yes}}
|-
| Imperfect || Imperfect, or non-ideal || {{No|''T'' and ''P''-dependent}} || {{No}}
|}
|}
=== ऊष्मीय और कैलोरी की दृष्टि से उत्तम गैस ===
=== ऊष्मीय और कैलोरी की दृष्टि से उत्तम गैस ===
Line 51: Line 66:


इसके अतिरिक्त, अन्य कारक संपीड़न चक्र के समय भूमिका में आते हैं और प्रभावी होते हैं यदि उनका अंतिम गणना परिणाम पर अधिक प्रभाव पड़ता है या नहीं। जो <math>C_P</math> स्थिर रखा गया था। इस प्रकार अक्षीय कंप्रेसर की मॉडलिंग करते समय, इन वास्तविक विश्व के प्रभावों के उदाहरणों में कंप्रेसर टिप-क्लीयरेंस, पृथक्करण, और सीमा परत/घर्षण हानि सम्मिलित हैं।
इसके अतिरिक्त, अन्य कारक संपीड़न चक्र के समय भूमिका में आते हैं और प्रभावी होते हैं यदि उनका अंतिम गणना परिणाम पर अधिक प्रभाव पड़ता है या नहीं। जो <math>C_P</math> स्थिर रखा गया था। इस प्रकार अक्षीय कंप्रेसर की मॉडलिंग करते समय, इन वास्तविक विश्व के प्रभावों के उदाहरणों में कंप्रेसर टिप-क्लीयरेंस, पृथक्करण, और सीमा परत/घर्षण हानि सम्मिलित हैं।
[[Category:Created On 11/08/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:गैसों]]


== यह भी देखें ==
== यह भी देखें ==

Revision as of 17:01, 26 September 2023

भौतिकी और अभियांत्रिकी में, आदर्श गैस सैद्धांतिक गैस मॉडल है जो विशिष्ट विधियों से वास्तविक गैसों से भिन्न होती है जिससे कुछ गणनाओं को संभालना सरल हो जाता है। सभी आदर्श गैस मॉडलों में, अंतर-आणविक बलों की उपेक्षा की जाती है। इसका अर्थ यह है कि कोई भी वान डेर वाल्स बलों से उत्पन्न होने वाली अनेक जटिलताओं की उपेक्षा कर सकता है। सभी उत्तम गैस मॉडल इस अर्थ में आदर्श गैस मॉडल हैं कि वे सभी अवस्था के आदर्श गैस समीकरण का पालन करते हैं। चूँकि, आदर्श गैस मॉडल के विचार को अधिकांशतः तापमान के साथ ताप क्षमता की भिन्नता (या गैर-परिवर्तन) के संबंध में विशिष्ट अतिरिक्त मान्यताओं के साथ अवस्था के आदर्श गैस समीकरण के संयोजन के रूप में प्रयुक्त किया जाता है।

उत्तम गैस नामकरण

भौतिकी और इंजीनियरिंग के विशेष क्षेत्र के आधार पर, आदर्श गैस और आदर्श गैस शब्द कभी-कभी एक दूसरे के स्थान पर उपयोग किए जाते हैं। जो कभी-कभी, अन्य भेद भी किए जाते हैं, जैसे थर्मली परफेक्ट गैस और कैलोरीली परफेक्ट गैस के बीच, या अपूर्ण, अर्ध-परिपूर्ण और परफेक्ट गैसों के बीच, और साथ ही आदर्श गैसों की विशेषताएं। इस प्रकार नामकरण के दो सामान्य सेटों को निम्नलिखित तालिका में संक्षेपित किया गया है।

नामकरण 1 नामकरण 2 स्थिर , , , या स्थिर , पर ताप क्षमता आदर्श-गैस नियम
और
कैलोरी की दृष्टि से परिपूर्ण परिपूर्ण style="background:#9EFF9E;vertical-align:middle;text-align:center;" class="table-yes"|Constant Yes
ऊष्मीय दृष्टि से परिपूर्ण अर्ध-परिपूर्ण style="background:#FFB;vertical-align:middle;text-align:center; " class="table-partial"|T-dependent Yes
आदर्श style="background:#FFB;vertical-align:middle;text-align:center; " class="table-partial"|May or may not be T -dependent Yes
अपूर्ण अपूर्ण, या गैर-आदर्श style="background:#FFC7C7;vertical-align:middle;text-align:center;" class="table-no"|T and P-dependent No
Nomenclature 1 Nomenclature 2 Heat capacity
at constant , ,
or constant ,
Ideal-gas law
and
Calorically perfect Perfect Constant Yes
Thermally perfect Semi-perfect T-dependent Yes
Ideal May or may not be T -dependent Yes
Imperfect Imperfect, or non-ideal T and P-dependent No

ऊष्मीय और कैलोरी की दृष्टि से उत्तम गैस

एक आदर्श गैस की परिभाषा के साथ, दो और सरलीकरण भी किए जा सकते हैं, चूँकि विभिन्न पाठ्यपुस्तकें निम्नलिखित सरलीकरणों को या तो छोड़ देती हैं या सामान्य आदर्श गैस परिभाषा में संयोजित कर देती हैं।

गैस के मोलों की निश्चित संख्या के लिए , तापीय रूप से उत्तम गैस

  • थर्मोडायनामिक संतुलन में है
  • रासायनिक रूप से प्रतिक्रिया नहीं कर रहा है
  • आंतरिक ऊर्जा , तापीय धारिता , और स्थिर आयतन/निरंतर दबाव ताप क्षमता , हैं जो पूरी तरह से तापमान के कार्य है, जो न की दबाव या आयतन , अर्थात, , , , . यह बाद वाली अभिव्यक्तियाँ सभी छोटे गुण परिवर्तनों के लिए मान्य हैं और स्थिरांक - या स्थिर - विविधताओं तक ही सीमित नहीं हैं।

कैलोरी की दृष्टि से उत्तम गैस

  • थर्मोडायनामिक संतुलन में है
  • रासायनिक रूप से प्रतिक्रिया नहीं कर रहा है
  • आंतरिक ऊर्जा है , और एन्थैल्पी यह केवल तापमान के कार्य हैं, अर्थात्, ,
  • ताप क्षमता , होती है जो स्थिर हैं, अर्थात्, , और , , जहाँ प्रत्येक मात्रा में कोई परिमित (गैर-विभेदक (गणित)) परिवर्तन है।

यह सिद्ध किया जा सकता है कि आदर्श गैस (अर्थात अवस्था के आदर्श गैस समीकरण को संतुष्ट करती है, ) या तो कैलोरी की दृष्टि से उत्तम है या ऊष्मीय दृष्टि से उत्तम है। ऐसा इसलिए है क्योंकि आदर्श गैस या आंतरिक ऊर्जा अधिकतम तापमान पर निर्भर करती है, जैसा कि थर्मोडायनामिक समीकरण द्वारा दिखाया गया है[1]

जो वास्तव में शून्य है जब . इस प्रकार, और अवस्था के इस विशेष समीकरण के लिए अधिकांशतः केवल तापमान ही कार्य करता है।

सांख्यिकीय यांत्रिकी और गैसों के सरल गतिज सिद्धांत दोनों से, हम अपेक्षा करते हैं कि मोनोआटोमिक आदर्श गैस की ताप क्षमता स्थिर रहेगी, क्योंकि ऐसी गैस के लिए केवल गतिज ऊर्जा ही आंतरिक ऊर्जा और इच्छानुसार योगात्मक स्थिरांक के अंदर योगदान करती है। और इसलिए , निरंतर है। इसके अतिरिक्त, मौलिक समविभाजन प्रमेय भविष्यवाणी करता है कि सभी आदर्श गैसों (यहां तक ​​कि बहुपरमाणुक) में सभी तापमानों पर निरंतर ताप क्षमता होती है। चूँकि, अब यह क्वांटम सांख्यिकीय यांत्रिकी के आधुनिक सिद्धांत के साथ-साथ प्रयोगात्मक डेटा से ज्ञात है कि बहुपरमाणुक आदर्श गैस का सामान्यतः इसकी आंतरिक ऊर्जा में थर्मल योगदान होगा जो तापमान के रैखिक कार्य नहीं हैं।[2][3] यह योगदान कंपन, घूर्णी और स्वतंत्रता की इलेक्ट्रॉनिक डिग्री के योगदान के कारण होते हैं क्योंकि वे बोल्ट्ज़मान वितरण के अनुसार तापमान के कार्य के रूप में पॉप्युलेट हो जाते हैं। इस स्थिति में हम पाते हैं कि और .[4] किंतु यदि ताप क्षमता किसी दिए गए गैस के लिए तापमान का कार्य है, फिर भी गणना के प्रयोजनों के लिए इसे स्थिर माना जा सकता है यदि तापमान और ताप क्षमता भिन्नताएं बहुत बड़ी नहीं हैं, जिससे कैलोरी की दृष्टि से सही गैस की धारणा बनती है ( नीचे देखें)।

इस प्रकार के अनुमान मॉडलिंग के लिए उपयोगी होते हैं, उदाहरण के लिए, अक्षीय कंप्रेसर जहां तापमान में उतार-चढ़ाव सामान्यतः इतना बड़ा नहीं होता है कि थर्मली परफेक्ट गैस मॉडल से कोई महत्वपूर्ण विचलन हो सकता है। इस मॉडल में ताप क्षमता को अभी भी बदलने की अनुमति है, चूँकि केवल तापमान के साथ, और अणुओं को अलग होने की अनुमति नहीं है। उत्तरार्द्ध का सामान्यतः तात्पर्य यह है कि तापमान <2500 K तक सीमित होना चाहिए।[5] यह तापमान सीमा गैस की रासायनिक संरचना पर निर्भर करती है और गणना कितनी स्पष्ट होनी चाहिए, क्योंकि आणविक पृथक्करण उच्च या निम्न तापमान पर महत्वपूर्ण हो सकता है जो आंतरिक रूप से गैस की आणविक प्रकृति पर निर्भर है।

इससे भी अधिक प्रतिबंधित कैलोरी की दृष्टि से परिपूर्ण गैस है जिसके लिए, इसके अतिरिक्त, ताप क्षमता स्थिर मानी जाती है। यद्यपि यह तापमान के दृष्टिकोण से सबसे अधिक प्रतिबंधात्मक मॉडल हो सकता है, यह निर्दिष्ट सीमाओं के अंदर उचित पूर्वानुमान लगाने के लिए पर्याप्त स्पष्ट हो सकता है। उदाहरण के लिए, अक्षीय कंप्रेसर के संपीड़न चरण (चर के साथ एक के लिए गणना की तुलना और स्थिरांक के साथ ) इस दृष्टिकोण का समर्थन करने के लिए पर्याप्त छोटा विचलन उत्पन्न कर सकता है।

इसके अतिरिक्त, अन्य कारक संपीड़न चक्र के समय भूमिका में आते हैं और प्रभावी होते हैं यदि उनका अंतिम गणना परिणाम पर अधिक प्रभाव पड़ता है या नहीं। जो स्थिर रखा गया था। इस प्रकार अक्षीय कंप्रेसर की मॉडलिंग करते समय, इन वास्तविक विश्व के प्रभावों के उदाहरणों में कंप्रेसर टिप-क्लीयरेंस, पृथक्करण, और सीमा परत/घर्षण हानि सम्मिलित हैं।

यह भी देखें

संदर्भ

  1. Atkins, Peter; de Paula, Julio (2014). Physical Chemistry: Thermodynamics, Structure, and Change (10th ed.). W.H. Freeman & Co. pp. 140–142.
  2. Chang, Raymond; Thoman, Jr., John W. (2014). रासायनिक विज्ञान के लिए भौतिक रसायन विज्ञान. University Science Books. pp. 35–65.
  3. Linstrom, Peter (1997). "NIST Standard Reference Database Number 69". NIST Chemistry WebBook. National Institutes of Science and Technology. doi:10.18434/T4D303. Retrieved 13 May 2021.
  4. McQuarrie, Donald A. (1976). सांख्यिकीय यांत्रिकी. New York, NY: University Science Books. pp. 88–112.
  5. Anderson, J D. Fundamentals of Aerodynamics.