टीईए लेजर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Gas laser}}ईए लेजर [[गैस लेजर]] है जो सामान्यतः वायुमंडलीय दबाव पर या उससे ऊपर गैस मिश्रण में उच्च वोल्टेज विद्युत निर्वहन द्वारा सक्रिय होता है। सबसे आम प्रकार [[कार्बन डाइऑक्साइड लेजर]] और [[एक्साइमर लेजर]] हैं, दोनों का उद्योग और अनुसंधान में बड़े पैमाने पर उपयोग किया जाता है; [[नाइट्रोजन लेजर]] कम आम हैं। संक्षिप्त नाम TEA का कारण ट्रांसवर्सली एक्साइटेड एटमॉस्फेरिक है।
{{short description|Gas laser}}'''टीईए लेजर''' [[गैस लेजर]] है जो सामान्यतः वायुमंडलीय दबाव पर या उससे ऊपर गैस मिश्रण में उच्च वोल्टेज विद्युत निर्वहन द्वारा सक्रिय होता है। सबसे आम प्रकार [[कार्बन डाइऑक्साइड लेजर]] और [[एक्साइमर लेजर]] हैं, दोनों का उद्योग और अनुसंधान में बड़े पैमाने पर उपयोग किया जाता है; [[नाइट्रोजन लेजर]] कम आम हैं। संक्षिप्त नाम "TEA" का अर्थ ट्रांसवर्सली एक्साइटेड एटमॉस्फेरिक है।


=='''इतिहास'''==
=='''इतिहास'''==


===आविष्कार===
===आविष्कार===
कार्बन डाइऑक्साइड (CO<sub>2</sub>) टीईए लेजर का आविष्कार 1960 के दशक के अंत में [[क्यूबेक]], [[कनाडा]] में [[डीआरडीसी वाल्कार्टियर]] में काम करने वाले [[जैक्स ब्यूलियू]] द्वारा किया गया था। 1970 तक विकास को गुप्त रखा गया था, जब संक्षिप्त विवरण प्रकाशित किया गया था।
कार्बन डाइऑक्साइड (CO<sub>2</sub>) टीईए लेजर का आविष्कार 1960 के दशक के अंत में कनाडा के क्यूबेक में में [[डीआरडीसी वाल्कार्टियर|डीआरडीसी]] [[वाल्कार्टियर]] में रक्षा अनुसंधान और विकास कनाडा में काम करने वाले [[जैक्स ब्यूलियू]] द्वारा किया गया था। 1970 तक विकास को गुप्त रखा गया था, जब संक्षिप्त विवरण प्रकाशित किया गया था।


1963 में, बेल टेलीफोन प्रयोगशालाओं में कार्यरत सी. कुमार एन. पटेल ने पहली बार कम दबाव वाले [[ आकाशवाणी आवृति |आकाशवाणी आवृति]] -उत्तेजित CO से 10.6 µm पर लेजर आउटपुट का प्रदर्शन किया।<sub>2</sub> [[गैस निर्वहन]]. नाइट्रोजन और हीलियम को सम्मिलित करने और प्रत्यक्ष वर्तमान विद्युत निर्वहन का उपयोग करके, लगभग 100 डब्ल्यू की निरंतर-तरंग शक्तियाँ प्राप्त की गईं। उच्च वोल्टेज का उपयोग करके डिस्चार्ज को स्पंदित करके, या घूमने वाले दर्पण का उपयोग करके [[क्यू-स्विचिंग]] करके, कुछ किलोवाट की पल्स शक्तियाँ व्यावहारिक सीमा के रूप में प्राप्त की जा सकती हैं।
1963 में, बेल टेलीफोन प्रयोगशालाओं में कार्यरत सी. कुमार एन. पटेल ने पहली बार कम दबाव वाले आरएफ-उत्तेजित CO<sub>2</sub> गैस डिस्चार्ज से 10.6 µm पर लेजर आउटपुट का प्रदर्शन किया। नाइट्रोजन और हीलियम को को जोड़ने और डीसी विद्युत निर्वहन का उपयोग करके, लगभग 100 डब्ल्यू की सीडब्ल्यू शक्तियां प्राप्त की गईं। उच्च वोल्टेज का उपयोग करके डिस्चार्ज को स्पंदित करके, या घूमने वाले दर्पण का उपयोग करके [[क्यू-स्विचिंग]] करके, कुछ किलोवाट की पल्स शक्तियाँ व्यावहारिक सीमा के रूप में प्राप्त की जा सकती हैं।


उच्च शिखर शक्तियाँ केवल उत्तेजित CO के घनत्व को बढ़ाकर ही प्राप्त की जा सकती हैं<sub>2</sub> अणु. गैस की प्रति इकाई मात्रा में संग्रहीत ऊर्जा की क्षमता घनत्व और इस प्रकार गैस के दबाव के साथ रैखिक रूप से बढ़ती है, किन्तु गैस के टूटने और ऊपरी लेजर स्तरों में युगल ऊर्जा को प्राप्त करने के लिए आवश्यक वोल्टेज उसी दर से बढ़ती है। बहुत अधिक वोल्टेज से बचने का व्यावहारिक समाधान यह था कि वोल्टेज को ऑप्टिकल अक्ष पर ट्रांसवर्सली पल्स किया जाए (न कि अनुदैर्ध्य रूप से जैसा कि कम दबाव वाले लेज़रों के स्थितियों में था), जिससे ब्रेकडाउन की दूरी कुछ सेंटीमीटर तक सीमित हो जाए। इसने कुछ दसियों केवी के प्रबंधनीय वोल्टेज के उपयोग की अनुमति दी। समस्या यह थी कि इन उच्च गैस दबावों पर चमक डिस्चार्ज को कैसे प्रारंभ और स्थिर किया जाए, बिना डिस्चार्ज को उज्ज्वल उच्च-वर्तमान चाप में परिवर्तित किए, और गैस की उपयोगी मात्रा पर इसे कैसे प्राप्त किया जाए।
उच्च शिखर शक्तियाँ केवल उत्तेजित CO<sub>2</sub>  अणुओं के घनत्व को बढ़ाकर ही प्राप्त की जा सकती हैं गैस की प्रति इकाई मात्रा में संग्रहीत ऊर्जा की क्षमता घनत्व और इस प्रकार गैस के दबाव के साथ रैखिक रूप से बढ़ती है, किन्तु गैस के टूटने और ऊपरी लेजर स्तरों में युगल ऊर्जा को प्राप्त करने के लिए आवश्यक वोल्टेज उसी दर से बढ़ती है। बहुत अधिक वोल्टेज से बचने का व्यावहारिक समाधान यह था कि वोल्टेज को ऑप्टिकल अक्ष पर ट्रांसवर्सली पल्स किया जाए (न कि अनुदैर्ध्य रूप से जैसा कि कम दबाव वाले लेज़रों के स्थितियों में था), जिससे ब्रेकडाउन की दूरी कुछ सेंटीमीटर तक सीमित हो जाए। इसने कुछ दसियों केवी के प्रबंधनीय वोल्टेज के उपयोग की अनुमति दी। समस्या यह थी कि इन उच्च गैस दबावों पर चमक डिस्चार्ज को कैसे प्रारंभ और स्थिर किया जाए, बिना डिस्चार्ज को उज्ज्वल उच्च-वर्तमान चाप में परिवर्तित किए, और गैस की उपयोगी मात्रा पर इसे कैसे प्राप्त किया जाए।


===सीओ<sub>2 </sub>टीईए लेज़र===
===सीओ<sub>2 </sub>टीईए लेज़र===
ब्यूलियू ने ट्रांसवर्सली-उत्तेजित वायुमंडलीय-दबाव CO की सूचना दी<sub>2</sub> लेजर. चाप निर्माण की समस्या का उनका समाधान कुछ सेंटीमीटर के पृथक्करण के साथ पिनों की रैखिक सरणी का सामना करने वाली संचालन पट्टी बनाना था। पिनों को व्यक्तिगत रूप से प्रतिरोधकों से लोड किया गया था, जिससे प्रत्येक पिन से कम करंट वाले ब्रश या ग्लो डिस्चार्ज में डिस्चार्ज हो जाता था, जो बार की ओर फैल जाता था। लेज़र कैविटी ने श्रृंखला में इनमें से 100-200 डिस्चार्ज की जांच की जिससे लेज़र लाभ मिला। तेज डिस्चार्ज कैपेसिटर तेजी से स्पार्क गैप या [[थाइरेट्रॉन]] का उपयोग करके लेजर इलेक्ट्रोड पर स्विच करता है जो उच्च वोल्टेज पल्स प्रदान करता है।
ब्यूलियू ने ट्रांसवर्सली-उत्तेजित वायुमंडलीय-दबाव CO<sub>2</sub> लेजर की सूचना दी। चाप निर्माण की समस्या का उनका समाधान कुछ सेंटीमीटर के पृथक्करण के साथ पिनों की रैखिक सरणी का सामना करने वाली संचालन पट्टी बनाना था। पिनों को व्यक्तिगत रूप से प्रतिरोधकों से लोड किया गया था, जिससे प्रत्येक पिन से कम करंट वाले ब्रश या ग्लो डिस्चार्ज में डिस्चार्ज हो जाता था, जो बार की ओर फैल जाता था। लेज़र कैविटी ने श्रृंखला में इनमें से 100-200 डिस्चार्ज की जांच की जिससे लेज़र लाभ मिला। तेज डिस्चार्ज कैपेसिटर तेजी से स्पार्क गैप या [[थाइरेट्रॉन]] का उपयोग करके लेजर इलेक्ट्रोड पर स्विच करता है जो उच्च वोल्टेज पल्स प्रदान करता है।


यह पहले पिन-बार टीईए लेज़र, जो प्रति सेकंड लगभग पल्स पर काम करते थे, निर्माण में आसान और सस्ते थे। वायुमंडलीय दबाव पर काम करके, समष्टि वैक्यूम और गैस-हैंडलिंग प्रणालियों से बचा जा सकता है। यदि उन्हें छोटे फोकल-लेंथ लेंस के साथ फोकस पर लाया जाए तब वह कुछ 100 [[नैनोसेकंड]] अवधि की [[मेगावाट]] की चरम शक्ति का उत्पादन कर सकते हैं, जो ढांकता हुआ हवा को तोड़ने में सक्षम है। हानि थे खराब लाभ समरूपता, प्रतिरोधों और आकार में अपव्यय।
यह पहले '''"पिन-बार"''' टीईए लेज़र, जो प्रति सेकंड लगभग पल्स पर काम करते थे, निर्माण में आसान और सस्ते थे। वायुमंडलीय दबाव पर काम करके, समष्टि वैक्यूम और गैस-हैंडलिंग प्रणालियों से बचा जा सकता है। यदि उन्हें छोटे फोकल-लेंथ लेंस के साथ फोकस पर लाया जाए तब वह कुछ 100 [[नैनोसेकंड]] अवधि की [[मेगावाट]] की चरम शक्ति का उत्पादन कर सकते हैं, जो ढांकता हुआ हवा को तोड़ने में सक्षम है। हानि थे खराब लाभ समरूपता, प्रतिरोधों और आकार में अपव्यय।


=== पियर्सन और लैम्बर्टन ===
=== पियर्सन और लैम्बर्टन ===
[[Image:TEA-Laser-Circuit.jpg|500px|thumb|'''चाय {{CO2}} लेजर परिपथ''']]पहला सच्चा (गैर पिन-बार) टीईए लेजर बाल्डॉक में यूके एमओडी सर्विसेज इलेक्ट्रॉनिक रिसर्च लेबोरेटरी में काम करने वाले पियर्सन और लैम्बर्टन द्वारा साकार किया गया था। उन्होंने या दो सेंटीमीटर से भिन्न किए गए रोगोस्की-प्रोफाइल इलेक्ट्रोड की जोड़ी का उपयोग किया। उनका दोहरा-निर्वहन किया गया जाइन ने डिस्चार्ज ऊर्जा के हिस्से को इलेक्ट्रोड के तरफ से समानांतर चलने और ऑफसेट करने वाले पतले तार से जोड़ा। इसने गैस को पूर्व-आयनित करने का काम किया जिसके परिणामस्वरूप समान वॉल्यूमेट्रिक चमक-निर्वहन हुआ। पूर्व-आयनीकरण के लिए समान महत्व की बात यह थी कि निर्वहन बहुत तेज होना चाहिए। ऊर्जा को तेजी से गैस में डालने से, उच्च-धारा वाले चापों को बनने का समय नहीं मिला।
[[Image:TEA-Laser-Circuit.jpg|500px|thumb|'''चाय {{CO2}} लेजर परिपथ''']]पहला सच्चा (गैर पिन-बार) टीईए लेजर बाल्डॉक में यूके एमओडी सर्विसेज इलेक्ट्रॉनिक रिसर्च लेबोरेटरी में काम करने वाले पियर्सन और लैम्बर्टन द्वारा साकार किया गया था। उन्होंने एक या दो सेंटीमीटर से भिन्न किए गए रोगोस्की-प्रोफाइल इलेक्ट्रोड की जोड़ी का उपयोग किया। उनका दोहरा-निर्वहन किया गया जाइन ने डिस्चार्ज ऊर्जा के हिस्से को इलेक्ट्रोड के तरफ से समानांतर चलने और ऑफसेट करने वाले पतले तार से जोड़ा। इसने गैस को पूर्व-आयनित करने का काम किया जिसके परिणामस्वरूप समान वॉल्यूमेट्रिक चमक-निर्वहन हुआ। पूर्व-आयनीकरण के लिए समान महत्व की बात यह थी कि निर्वहन बहुत तेज होना चाहिए। ऊर्जा को तेजी से गैस में डालने से, उच्च-धारा वाले चापों को बनने का समय नहीं मिला।


पियर्सन और लैम्बर्टन ने घटनाओं के अनुक्रम को सत्यापित करने के लिए [[स्ट्रीक कैमरा]] का उपयोग किया। जैसे ही वोल्टेज को इलेक्ट्रोडों पर खड़ा किया गया, पतले तार से क्षेत्र उत्सर्जन के परिणामस्वरूप उसके और एनोड के मध्य शीट डिस्चार्ज हो गया। चूंकि पश्चात् का मुख्य निर्वहन कैथोड से प्रारंभ हुआ, इसलिए यह सुझाव दिया गया कि फोटो उत्सर्जन आरंभिक तंत्र था। इसके पश्चात्, अन्य श्रमिकों ने पूर्व-आयनीकरण प्राप्त करने के लिए वैकल्पिक तरीकों का प्रदर्शन किया था। इनमें ढांकता हुआ पृथक तार और इलेक्ट्रोड, स्लाइडिंग स्पार्क एरे, इलेक्ट्रॉन बीम और कैपेसिटर से भरे पिन प्रतिबाधा सम्मिलित थे।
पियर्सन और लैम्बर्टन ने घटनाओं के अनुक्रम को सत्यापित करने के लिए [[स्ट्रीक कैमरा]] का उपयोग किया। जैसे ही वोल्टेज को इलेक्ट्रोडों पर खड़ा किया गया, पतले तार से क्षेत्र उत्सर्जन के परिणामस्वरूप उसके और एनोड के मध्य शीट डिस्चार्ज हो गया। चूंकि पश्चात् का मुख्य निर्वहन कैथोड से प्रारंभ हुआ, इसलिए यह सुझाव दिया गया कि फोटो उत्सर्जन आरंभिक तंत्र था। इसके पश्चात्, अन्य श्रमिकों ने पूर्व-आयनीकरण प्राप्त करने के लिए वैकल्पिक तरीकों का प्रदर्शन किया था। इनमें ढांकता हुआ पृथक तार और इलेक्ट्रोड, स्लाइडिंग स्पार्क एरे, इलेक्ट्रॉन बीम और कैपेसिटर से भरे पिन प्रतिबाधा सम्मिलित थे।
Line 23: Line 23:


=== डबल-डिस्चार्ज विधि ===
=== डबल-डिस्चार्ज विधि ===
स्थिर उच्च दबाव वाले गैस डिस्चार्ज को प्रारंभ करने के लिए आवश्यक डबल-डिस्चार्ज विधि का उपयोग वायुमंडलीय दबाव के नीचे और ऊपर दोनों स्थान किया जा सकता है, और इन उपकरणों को टीईए लेजर के रूप में भी संदर्भित किया जा सकता है। पराबैंगनी में काम करने वाले वाणिज्यिक एक्साइमर लेजर सीओ के समान ही डबल-डिस्चार्ज शासन का उपयोग करते हैं<sub>2</sub> टीईए लेजर। [[ क्रीप्टोण |क्रीप्टोण]] , [[आर्गन]] या [[क्सीनन]] क्लोराइड या [[हीलियम]] के साथ 2-3 दबाव वाले वायुमंडल में बफर्ड फ्लोराइड गैस का उपयोग करके, एक्साइमर लेजर पराबैंगनी लेजर प्रकाश के मेगावाट पल्स का उत्पादन कर सकते हैं।
स्थिर उच्च दबाव वाले गैस डिस्चार्ज को प्रारंभ करने के लिए आवश्यक डबल-डिस्चार्ज विधि का उपयोग वायुमंडलीय दबाव के नीचे और ऊपर दोनों स्थान किया जा सकता है, और इन उपकरणों को टीईए लेजर के रूप में भी संदर्भित किया जा सकता है। पराबैंगनी में काम करने वाले वाणिज्यिक एक्साइमर लेजर CO<sub>2</sub> टीईए लेजर के समान ही डबल-डिस्चार्ज शासन का उपयोग करते हैं [[ क्रीप्टोण |क्रीप्टोण]], [[आर्गन]] या [[क्सीनन]] क्लोराइड या [[हीलियम]] के साथ 2-3 दबाव वाले वायुमंडल में बफर्ड फ्लोराइड गैस का उपयोग करके, एक्साइमर लेजर पराबैंगनी लेजर प्रकाश के मेगावाट पल्स का उत्पादन कर सकते हैं।


=== सूक्ष्म निर्वहन विवरण ===
=== सूक्ष्म निर्वहन विवरण ===
अधिकांश ओवर-वोल्टेज स्पार्क गैप में इलेक्ट्रॉनों का हिमस्खलन एनोड की ओर बढ़ता है।
अधिकांश ओवर-वोल्टेज स्पार्क गैप में इलेक्ट्रॉनों का हिमस्खलन एनोड की ओर बढ़ता है। जैसे-जैसे इलेक्ट्रॉनों की संख्या बढ़ती है कूलम्ब का नियम कहता है कि क्षेत्र की ताकत भी बढ़ती है। शक्तिशाली क्षेत्र हिमस्खलन को तेज करता है। वोल्टेज का धीमा वृद्धि समय हिमस्खलन उत्पन्न करने से पहले इलेक्ट्रॉनों को एनोड की ओर बहने देता है। इलेक्ट्रोफिलिक अणु हिमस्खलन उत्पन्न करने से पहले इलेक्ट्रॉनों को पकड़ लेते हैं। थर्मल प्रभाव सजातीय डिस्चार्ज इलेक्ट्रॉन को अस्थिर कर देता है और आयन प्रसार इसे स्थिर कर देता है।
जैसे-जैसे इलेक्ट्रॉनों की संख्या बढ़ती है कूलम्ब का नियम कहता है कि क्षेत्र की ताकत भी बढ़ती है।
 
शक्तिशाली क्षेत्र हिमस्खलन को तेज करता है।
वोल्टेज का धीमा वृद्धि समय हिमस्खलन उत्पन्न करने से पहले इलेक्ट्रॉनों को एनोड की ओर बहने देता है।
 
इलेक्ट्रोफिलिक अणु हिमस्खलन उत्पन्न करने से पहले इलेक्ट्रॉनों को पकड़ लेते हैं।
थर्मल प्रभाव सजातीय डिस्चार्ज इलेक्ट्रॉन को अस्थिर कर देता है और आयन प्रसार इसे स्थिर कर देता है।


=='''अनुप्रयोग'''==
=='''अनुप्रयोग'''==
[[File:Gaussian beam burn comparison.png|thumb|300px|right|गाऊसी किरण फोटोग्राफिक पेपर जल गया संरेखण दर्पणों को समायोजित करके अनुकूलन प्रक्रिया के समय प्राप्त कार्बन डाइऑक्साइड टीईए लेजर की तुलना।]]चाय कंपनी<sub>2</sub> उत्पाद अंकन के लिए लेजर का बड़े पैमाने पर उपयोग किया जाता है। जानकारी वाले मास्क के माध्यम से लेजर लाइट को पास करके और इसे उस तीव्रता पर केंद्रित करके विभिन्न पैकेजिंग सामग्रियों पर लोगो, सीरियल नंबर या सर्वोत्तम-पहले दिनांक को चिह्नित किया जाता है जो चिह्नित की जाने वाली सामग्री को भिन्न कर देता है। इसके बगल में टी.ई.ए<sub>2</sub> 1990 के दशक के मध्य से औद्योगिक वातावरण में सतह की तैयारी के लिए लेजर का उपयोग किया जाता है। अनुप्रयोगों में सम्मिलित हैं:
[[File:Gaussian beam burn comparison.png|thumb|300px|right|गाऊसी किरण फोटोग्राफिक पेपर जल गया संरेखण दर्पणों को समायोजित करके अनुकूलन प्रक्रिया के समय प्राप्त कार्बन डाइऑक्साइड टीईए लेजर की तुलना।]]उत्पाद अंकन के लिए TEA CO<sub>2</sub> लेजर का बड़े पैमाने पर उपयोग किया जाता है। जानकारी वाले मास्क के माध्यम से लेजर लाइट को पास करके और इसे उस तीव्रता पर केंद्रित करके विभिन्न पैकेजिंग सामग्रियों पर लोगो, सीरियल नंबर या सर्वोत्तम-पहले दिनांक को चिह्नित किया जाता है जो चिह्नित की जाने वाली सामग्री को भिन्न कर देता है। इसके अलावा 1990 के दशक के मध्य से औद्योगिक वातावरण में सतह की तैयारी के लिए TEA CO<sub>2</sub> लेजर का उपयोग किया जाता है। अनुप्रयोगों में सम्मिलित हैं:


* चयनात्मक या पूर्ण पेंट स्ट्रिपिंग, जिसे विमान रखरखाव या मरम्मत के क्षेत्र में चयनात्मक लेजर कोटिंग निष्कासन (एसएलसीआर) के रूप में जाना जाता है; इस चयनात्मक स्ट्रिपिंग प्रक्रिया को 2001 में OEM और विमान रखरखाव केंद्रों द्वारा पहली लेजर स्ट्रिपिंग प्रक्रिया के रूप में अनुमोदित किया गया था।
* चयनात्मक या पूर्ण पेंट स्ट्रिपिंग, जिसे विमान रखरखाव या मरम्मत के क्षेत्र में चयनात्मक लेजर कोटिंग निष्कासन (एसएलसीआर) के रूप में जाना जाता है; इस चयनात्मक स्ट्रिपिंग प्रक्रिया को 2001 में OEM और विमान रखरखाव केंद्रों द्वारा पहली लेजर स्ट्रिपिंग प्रक्रिया के रूप में अनुमोदित किया गया था।
Line 43: Line 36:
* सांचों और औजारों की नि:शुल्क सफाई करें, जैसे। ऑटोमोटिव आंतरिक भागों के लिए खाल बनाने के लिए टायर मोल्ड या मोल्ड।
* सांचों और औजारों की नि:शुल्क सफाई करें, जैसे। ऑटोमोटिव आंतरिक भागों के लिए खाल बनाने के लिए टायर मोल्ड या मोल्ड।


इस विशिष्ट लेज़र का लाभ CO का संयोजन है<sub>2</sub> विशिष्ट तरंग दैर्ध्य, मुख्य रूप से 10.6 µm, लघु दालों के उच्च ऊर्जा स्तर (~2 μs) के साथ।
इस विशिष्ट लेज़र का लाभ CO<sub>2</sub> विशिष्ट तरंग दैर्ध्य का संयोजन है, मुख्य रूप से 10.6 µm, लघु दालों के उच्च ऊर्जा स्तर (~2 μs) के साथ।


=='''यह भी देखें'''==
=='''यह भी देखें'''==

Revision as of 10:42, 25 September 2023

टीईए लेजर गैस लेजर है जो सामान्यतः वायुमंडलीय दबाव पर या उससे ऊपर गैस मिश्रण में उच्च वोल्टेज विद्युत निर्वहन द्वारा सक्रिय होता है। सबसे आम प्रकार कार्बन डाइऑक्साइड लेजर और एक्साइमर लेजर हैं, दोनों का उद्योग और अनुसंधान में बड़े पैमाने पर उपयोग किया जाता है; नाइट्रोजन लेजर कम आम हैं। संक्षिप्त नाम "TEA" का अर्थ ट्रांसवर्सली एक्साइटेड एटमॉस्फेरिक है।

इतिहास

आविष्कार

कार्बन डाइऑक्साइड (CO2) टीईए लेजर का आविष्कार 1960 के दशक के अंत में कनाडा के क्यूबेक में में डीआरडीसी वाल्कार्टियर में रक्षा अनुसंधान और विकास कनाडा में काम करने वाले जैक्स ब्यूलियू द्वारा किया गया था। 1970 तक विकास को गुप्त रखा गया था, जब संक्षिप्त विवरण प्रकाशित किया गया था।

1963 में, बेल टेलीफोन प्रयोगशालाओं में कार्यरत सी. कुमार एन. पटेल ने पहली बार कम दबाव वाले आरएफ-उत्तेजित CO2 गैस डिस्चार्ज से 10.6 µm पर लेजर आउटपुट का प्रदर्शन किया। नाइट्रोजन और हीलियम को को जोड़ने और डीसी विद्युत निर्वहन का उपयोग करके, लगभग 100 डब्ल्यू की सीडब्ल्यू शक्तियां प्राप्त की गईं। उच्च वोल्टेज का उपयोग करके डिस्चार्ज को स्पंदित करके, या घूमने वाले दर्पण का उपयोग करके क्यू-स्विचिंग करके, कुछ किलोवाट की पल्स शक्तियाँ व्यावहारिक सीमा के रूप में प्राप्त की जा सकती हैं।

उच्च शिखर शक्तियाँ केवल उत्तेजित CO2 अणुओं के घनत्व को बढ़ाकर ही प्राप्त की जा सकती हैं गैस की प्रति इकाई मात्रा में संग्रहीत ऊर्जा की क्षमता घनत्व और इस प्रकार गैस के दबाव के साथ रैखिक रूप से बढ़ती है, किन्तु गैस के टूटने और ऊपरी लेजर स्तरों में युगल ऊर्जा को प्राप्त करने के लिए आवश्यक वोल्टेज उसी दर से बढ़ती है। बहुत अधिक वोल्टेज से बचने का व्यावहारिक समाधान यह था कि वोल्टेज को ऑप्टिकल अक्ष पर ट्रांसवर्सली पल्स किया जाए (न कि अनुदैर्ध्य रूप से जैसा कि कम दबाव वाले लेज़रों के स्थितियों में था), जिससे ब्रेकडाउन की दूरी कुछ सेंटीमीटर तक सीमित हो जाए। इसने कुछ दसियों केवी के प्रबंधनीय वोल्टेज के उपयोग की अनुमति दी। समस्या यह थी कि इन उच्च गैस दबावों पर चमक डिस्चार्ज को कैसे प्रारंभ और स्थिर किया जाए, बिना डिस्चार्ज को उज्ज्वल उच्च-वर्तमान चाप में परिवर्तित किए, और गैस की उपयोगी मात्रा पर इसे कैसे प्राप्त किया जाए।

सीओ2 टीईए लेज़र

ब्यूलियू ने ट्रांसवर्सली-उत्तेजित वायुमंडलीय-दबाव CO2 लेजर की सूचना दी। चाप निर्माण की समस्या का उनका समाधान कुछ सेंटीमीटर के पृथक्करण के साथ पिनों की रैखिक सरणी का सामना करने वाली संचालन पट्टी बनाना था। पिनों को व्यक्तिगत रूप से प्रतिरोधकों से लोड किया गया था, जिससे प्रत्येक पिन से कम करंट वाले ब्रश या ग्लो डिस्चार्ज में डिस्चार्ज हो जाता था, जो बार की ओर फैल जाता था। लेज़र कैविटी ने श्रृंखला में इनमें से 100-200 डिस्चार्ज की जांच की जिससे लेज़र लाभ मिला। तेज डिस्चार्ज कैपेसिटर तेजी से स्पार्क गैप या थाइरेट्रॉन का उपयोग करके लेजर इलेक्ट्रोड पर स्विच करता है जो उच्च वोल्टेज पल्स प्रदान करता है।

यह पहले "पिन-बार" टीईए लेज़र, जो प्रति सेकंड लगभग पल्स पर काम करते थे, निर्माण में आसान और सस्ते थे। वायुमंडलीय दबाव पर काम करके, समष्टि वैक्यूम और गैस-हैंडलिंग प्रणालियों से बचा जा सकता है। यदि उन्हें छोटे फोकल-लेंथ लेंस के साथ फोकस पर लाया जाए तब वह कुछ 100 नैनोसेकंड अवधि की मेगावाट की चरम शक्ति का उत्पादन कर सकते हैं, जो ढांकता हुआ हवा को तोड़ने में सक्षम है। हानि थे खराब लाभ समरूपता, प्रतिरोधों और आकार में अपव्यय।

पियर्सन और लैम्बर्टन

चाय CO2 लेजर परिपथ

पहला सच्चा (गैर पिन-बार) टीईए लेजर बाल्डॉक में यूके एमओडी सर्विसेज इलेक्ट्रॉनिक रिसर्च लेबोरेटरी में काम करने वाले पियर्सन और लैम्बर्टन द्वारा साकार किया गया था। उन्होंने एक या दो सेंटीमीटर से भिन्न किए गए रोगोस्की-प्रोफाइल इलेक्ट्रोड की जोड़ी का उपयोग किया। उनका दोहरा-निर्वहन किया गया जाइन ने डिस्चार्ज ऊर्जा के हिस्से को इलेक्ट्रोड के तरफ से समानांतर चलने और ऑफसेट करने वाले पतले तार से जोड़ा। इसने गैस को पूर्व-आयनित करने का काम किया जिसके परिणामस्वरूप समान वॉल्यूमेट्रिक चमक-निर्वहन हुआ। पूर्व-आयनीकरण के लिए समान महत्व की बात यह थी कि निर्वहन बहुत तेज होना चाहिए। ऊर्जा को तेजी से गैस में डालने से, उच्च-धारा वाले चापों को बनने का समय नहीं मिला।

पियर्सन और लैम्बर्टन ने घटनाओं के अनुक्रम को सत्यापित करने के लिए स्ट्रीक कैमरा का उपयोग किया। जैसे ही वोल्टेज को इलेक्ट्रोडों पर खड़ा किया गया, पतले तार से क्षेत्र उत्सर्जन के परिणामस्वरूप उसके और एनोड के मध्य शीट डिस्चार्ज हो गया। चूंकि पश्चात् का मुख्य निर्वहन कैथोड से प्रारंभ हुआ, इसलिए यह सुझाव दिया गया कि फोटो उत्सर्जन आरंभिक तंत्र था। इसके पश्चात्, अन्य श्रमिकों ने पूर्व-आयनीकरण प्राप्त करने के लिए वैकल्पिक तरीकों का प्रदर्शन किया था। इनमें ढांकता हुआ पृथक तार और इलेक्ट्रोड, स्लाइडिंग स्पार्क एरे, इलेक्ट्रॉन बीम और कैपेसिटर से भरे पिन प्रतिबाधा सम्मिलित थे।

मूल पियर्सन-लैम्बरटन टीईए लेजर को डीसी बिजली आपूर्ति से प्रतिरोधक रूप से चार्ज किए गए कैपेसिटर को डिस्चार्ज करने वाले स्पार्क गैप के साथ स्विच करने पर प्रति सेकंड लगभग पल्स पर संचालित किया जा सकता है। इलेक्ट्रोड के मध्य गैस को प्रसारित करके, जो दोषरहित कैपेसिटर चार्जिंग का उपयोग कर रहा था और स्पार्क-गैप को थायरट्रॉन के साथ बदल रहा था, पश्चात् में टीईए लेजर के विभिन्न डिजाइनों के साथ प्रति सेकंड हजार पल्स से अधिक की पुनरावृत्ति दर प्राप्त की गई।

डबल-डिस्चार्ज विधि

स्थिर उच्च दबाव वाले गैस डिस्चार्ज को प्रारंभ करने के लिए आवश्यक डबल-डिस्चार्ज विधि का उपयोग वायुमंडलीय दबाव के नीचे और ऊपर दोनों स्थान किया जा सकता है, और इन उपकरणों को टीईए लेजर के रूप में भी संदर्भित किया जा सकता है। पराबैंगनी में काम करने वाले वाणिज्यिक एक्साइमर लेजर CO2 टीईए लेजर के समान ही डबल-डिस्चार्ज शासन का उपयोग करते हैं । क्रीप्टोण, आर्गन या क्सीनन क्लोराइड या हीलियम के साथ 2-3 दबाव वाले वायुमंडल में बफर्ड फ्लोराइड गैस का उपयोग करके, एक्साइमर लेजर पराबैंगनी लेजर प्रकाश के मेगावाट पल्स का उत्पादन कर सकते हैं।

सूक्ष्म निर्वहन विवरण

अधिकांश ओवर-वोल्टेज स्पार्क गैप में इलेक्ट्रॉनों का हिमस्खलन एनोड की ओर बढ़ता है। जैसे-जैसे इलेक्ट्रॉनों की संख्या बढ़ती है कूलम्ब का नियम कहता है कि क्षेत्र की ताकत भी बढ़ती है। शक्तिशाली क्षेत्र हिमस्खलन को तेज करता है। वोल्टेज का धीमा वृद्धि समय हिमस्खलन उत्पन्न करने से पहले इलेक्ट्रॉनों को एनोड की ओर बहने देता है। इलेक्ट्रोफिलिक अणु हिमस्खलन उत्पन्न करने से पहले इलेक्ट्रॉनों को पकड़ लेते हैं। थर्मल प्रभाव सजातीय डिस्चार्ज इलेक्ट्रॉन को अस्थिर कर देता है और आयन प्रसार इसे स्थिर कर देता है।

अनुप्रयोग

गाऊसी किरण फोटोग्राफिक पेपर जल गया संरेखण दर्पणों को समायोजित करके अनुकूलन प्रक्रिया के समय प्राप्त कार्बन डाइऑक्साइड टीईए लेजर की तुलना।

उत्पाद अंकन के लिए TEA CO2 लेजर का बड़े पैमाने पर उपयोग किया जाता है। जानकारी वाले मास्क के माध्यम से लेजर लाइट को पास करके और इसे उस तीव्रता पर केंद्रित करके विभिन्न पैकेजिंग सामग्रियों पर लोगो, सीरियल नंबर या सर्वोत्तम-पहले दिनांक को चिह्नित किया जाता है जो चिह्नित की जाने वाली सामग्री को भिन्न कर देता है। इसके अलावा 1990 के दशक के मध्य से औद्योगिक वातावरण में सतह की तैयारी के लिए TEA CO2 लेजर का उपयोग किया जाता है। अनुप्रयोगों में सम्मिलित हैं:

  • चयनात्मक या पूर्ण पेंट स्ट्रिपिंग, जिसे विमान रखरखाव या मरम्मत के क्षेत्र में चयनात्मक लेजर कोटिंग निष्कासन (एसएलसीआर) के रूप में जाना जाता है; इस चयनात्मक स्ट्रिपिंग प्रक्रिया को 2001 में OEM और विमान रखरखाव केंद्रों द्वारा पहली लेजर स्ट्रिपिंग प्रक्रिया के रूप में अनुमोदित किया गया था।
  • पेंटिंग और चिपकाने के लिए सतहों की सक्रियता या सफाई।
  • बॉन्डिंग या वेल्डिंग की तैयारी के रूप में संदूषण या कोटिंग परतों को हटाना।
  • सांचों और औजारों की नि:शुल्क सफाई करें, जैसे। ऑटोमोटिव आंतरिक भागों के लिए खाल बनाने के लिए टायर मोल्ड या मोल्ड।

इस विशिष्ट लेज़र का लाभ CO2 विशिष्ट तरंग दैर्ध्य का संयोजन है, मुख्य रूप से 10.6 µm, लघु दालों के उच्च ऊर्जा स्तर (~2 μs) के साथ।

यह भी देखें

  • नाइट्रोजन लेजर

संदर्भ

  • पटेल, C. K. N. (1964-05-25). "Interpretation of COM2 Optical Maser Experiments". भौतिक समीक्षा पत्र. अमेरिकन फिजिकल सोसायटी (एपीएस). 12 (21): 588–590. doi:10.1103/physrevlett.12.588. ISSN 0031-9007.
  • Beaulieu, A. J. (1970-06-15). "Transversely Excited Atmospheric Pressure CO2 Lasers". अनुप्रयुक्त भौतिकी पत्र. एआईपी प्रकाशन. 16 (12): 504–505. doi:10.1063/1.1653083. ISSN 0003-6951.
  • पियर्सन, P.; लैम्बर्टन, H. (1972). "वायुमंडलीय दबाव CO2 लेजर प्रति इकाई आयतन में उच्च आउटपुट ऊर्जा देते हैं". क्वांटम इलेक्ट्रॉनिक्स का आईईईई जर्नल. इंस्टीट्यूट ऑफ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स (आईईईई). 8 (2): 145–149. doi:10.1109/jqe.1972.1076905. ISSN 0018-9197.
  • लेवाटर, जेफरी आई.; Lin, Shao‐Chi (1980). "उच्च गैस दबाव पर स्पंदित हिमस्खलन निर्वहन के सजातीय गठन के लिए आवश्यक शर्तें". एप्लाइड फिजिक्स जर्नल. एआईपी प्रकाशन. 51 (1): 210–222. doi:10.1063/1.327412. ISSN 0021-8979.

बाहरी संबंध