डबल इलेक्ट्रॉन कैप्चर: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Mode of radioactive decay}} {{Nuclear physics|cTopic=Capturing processes}} डबल इलेक्ट्रॉन कैप्चर एक परम...")
 
No edit summary
Line 1: Line 1:
{{short description|Mode of radioactive decay}}
{{short description|Mode of radioactive decay}}
{{Nuclear physics|cTopic=Capturing processes}}
{{Nuclear physics|cTopic=Capturing processes}}
डबल इलेक्ट्रॉन कैप्चर एक [[परमाणु नाभिक]] का [[क्षय मोड]] है।<ref>{{cite journal |journal=Zeitschrift für Physik A |year=1994 |volume=347 |issue=3 |pages=151–160 |author1=Hirsch, M. |display-authors=etal |title=Nuclear structure calculation of β<sup>+</sup>β<sup>+</sup>, β<sup>+</sup>/EC and EC/EC decay matrix elements |doi=10.1007/BF01292371|bibcode=1994ZPhyA.347..151H |s2cid=120191487 }}</ref> कई [[न्यूक्लियॉन]] ए और [[परमाणु संख्या]] जेड वाले [[न्यूक्लाइड]] (ए, जेड) के लिए, डबल [[इलेक्ट्रॉन]] कैप्चर केवल तभी संभव है जब न्यूक्लाइड का द्रव्यमान (ए, जेड−2) कम हो।
डबल इलेक्ट्रॉन कैप्चर [[परमाणु नाभिक]] का [[क्षय मोड]] है।<ref>{{cite journal |journal=Zeitschrift für Physik A |year=1994 |volume=347 |issue=3 |pages=151–160 |author1=Hirsch, M. |display-authors=etal |title=Nuclear structure calculation of β<sup>+</sup>β<sup>+</sup>, β<sup>+</sup>/EC and EC/EC decay matrix elements |doi=10.1007/BF01292371|bibcode=1994ZPhyA.347..151H |s2cid=120191487 }}</ref> कई [[न्यूक्लियॉन]] ए और [[परमाणु संख्या]] जेड वाले [[न्यूक्लाइड]] (ए, जेड) के लिए, डबल [[इलेक्ट्रॉन]] कैप्चर केवल तभी संभव है जब न्यूक्लाइड का द्रव्यमान (ए, जेड−2) कम हो।
 
क्षय की इस विधा में, दो कक्षीय इलेक्ट्रॉनों को नाभिक में दो [[प्रोटोन]] द्वारा [[कमजोर अंतःक्रिया]] के माध्यम से पकड़ लिया जाता है, जिससे दो [[न्यूट्रॉन]] बनते हैं (इस प्रक्रिया में दो [[ न्युट्रीनो |न्युट्रीनो]] उत्सर्जित होते हैं)। चूँकि प्रोटॉन न्यूट्रॉन में बदल जाते हैं, न्यूट्रॉन की संख्या दो बढ़ जाती है, जबकि प्रोटॉन Z की संख्या दो घट जाती है, और परमाणु द्रव्यमान संख्या A अपरिवर्तित रहती है। परिणामस्वरूप, परमाणु संख्या को दो से कम करके, डबल इलेक्ट्रॉन कैप्चर न्यूक्लाइड को अलग [[रासायनिक तत्व]] में बदल देता है।<ref>{{Cite journal|last1=Abe|first1=K.|last2=Hiraide|first2=K.|last3=Ichimura|first3=K.|last4=Kishimoto|first4=Y.|last5=Kobayashi|first5=K.|last6=Kobayashi|first6=M.|last7=Moriyama|first7=S.|last8=Nakahata|first8=M.|last9=Norita|first9=T.|last10=Ogawa|first10=H.|last11=Sato|first11=K.|date=2018-05-01|title=Improved search for two-neutrino double electron capture on 124Xe and 126Xe using particle identification in XMASS-I|url=https://academic.oup.com/ptep/article/2018/5/053D03/5021518|journal=Progress of Theoretical and Experimental Physics|language=en|volume=2018|issue=5|doi=10.1093/ptep/pty053|doi-access=free}}</ref>


क्षय की इस विधा में, दो कक्षीय इलेक्ट्रॉनों को नाभिक में दो [[प्रोटोन]] द्वारा [[कमजोर अंतःक्रिया]] के माध्यम से पकड़ लिया जाता है, जिससे दो [[न्यूट्रॉन]] बनते हैं (इस प्रक्रिया में दो [[ न्युट्रीनो ]] उत्सर्जित होते हैं)। चूँकि प्रोटॉन न्यूट्रॉन में बदल जाते हैं, न्यूट्रॉन की संख्या दो बढ़ जाती है, जबकि प्रोटॉन Z की संख्या दो घट जाती है, और परमाणु द्रव्यमान संख्या A अपरिवर्तित रहती है। परिणामस्वरूप, परमाणु संख्या को दो से कम करके, डबल इलेक्ट्रॉन कैप्चर न्यूक्लाइड को एक अलग [[रासायनिक तत्व]] में बदल देता है।<ref>{{Cite journal|last1=Abe|first1=K.|last2=Hiraide|first2=K.|last3=Ichimura|first3=K.|last4=Kishimoto|first4=Y.|last5=Kobayashi|first5=K.|last6=Kobayashi|first6=M.|last7=Moriyama|first7=S.|last8=Nakahata|first8=M.|last9=Norita|first9=T.|last10=Ogawa|first10=H.|last11=Sato|first11=K.|date=2018-05-01|title=Improved search for two-neutrino double electron capture on 124Xe and 126Xe using particle identification in XMASS-I|url=https://academic.oup.com/ptep/article/2018/5/053D03/5021518|journal=Progress of Theoretical and Experimental Physics|language=en|volume=2018|issue=5|doi=10.1093/ptep/pty053|doi-access=free}}</ref>
उदाहरण:
उदाहरण:
:{| border="0"
:{| border="0"
Line 12: Line 13:


== दुर्लभता ==
== दुर्लभता ==
ज्यादातर मामलों में यह क्षय मोड अन्य, अधिक संभावित मोड द्वारा छिपाया जाता है जिसमें कम कण शामिल होते हैं, जैसे एकल [[ इलेक्ट्रॉन पर कब्जा ]]। जब अन्य सभी मोड "निषिद्ध" होते हैं (दृढ़ता से दबा दिए जाते हैं) तो डबल इलेक्ट्रॉन कैप्चर क्षय का मुख्य मोड बन जाता है। प्राकृतिक रूप से पाए जाने वाले 34 नाभिक मौजूद हैं जिनके बारे में माना जाता है कि वे दोहरे इलेक्ट्रॉन कैप्चर से गुजरते हैं, लेकिन इस प्रक्रिया की पुष्टि केवल तीन न्यूक्लाइड के क्षय में अवलोकन द्वारा की गई है: {{chem|78|36|Kr}}, {{chem|130|56|Ba}}, और {{chem|124|54|Xe}}.{{NUBASE2016|ref}}
ज्यादातर मामलों में यह क्षय मोड अन्य, अधिक संभावित मोड द्वारा छिपाया जाता है जिसमें कम कण शामिल होते हैं, जैसे एकल [[ इलेक्ट्रॉन पर कब्जा |इलेक्ट्रॉन पर कब्जा]] । जब अन्य सभी मोड "निषिद्ध" होते हैं (दृढ़ता से दबा दिए जाते हैं) तो डबल इलेक्ट्रॉन कैप्चर क्षय का मुख्य मोड बन जाता है। प्राकृतिक रूप से पाए जाने वाले 34 नाभिक मौजूद हैं जिनके बारे में माना जाता है कि वे दोहरे इलेक्ट्रॉन कैप्चर से गुजरते हैं, लेकिन इस प्रक्रिया की पुष्टि केवल तीन न्यूक्लाइड के क्षय में अवलोकन द्वारा की गई है: {{chem|78|36|Kr}}, {{chem|130|56|Ba}}, और {{chem|124|54|Xe}}.{{NUBASE2016|ref}}


एक कारण यह है कि दोहरे इलेक्ट्रॉन कैप्चर की संभावना बहुत कम है; इस विधा के लिए अर्ध-जीवन|अर्ध-जीवन 10 से काफी ऊपर है{{sup|20}} साल। दूसरा कारण यह है कि इस प्रक्रिया में बनाए गए एकमात्र पता लगाने योग्य कण [[एक्स-रे]] और [[बरमा इलेक्ट्रॉन]] हैं जो उत्तेजित परमाणु खोल द्वारा उत्सर्जित होते हैं। उनकी ऊर्जा की सीमा (~1-10 [[ कीव ]]) में, पृष्ठभूमि आमतौर पर ऊंची होती है। इस प्रकार, डबल इलेक्ट्रॉन कैप्चर का प्रायोगिक पता लगाना डबल बीटा क्षय की तुलना में अधिक कठिन है।
एक कारण यह है कि दोहरे इलेक्ट्रॉन कैप्चर की संभावना बहुत कम है; इस विधा के लिए अर्ध-जीवन|अर्ध-जीवन 10 से काफी ऊपर है{{sup|20}} साल। दूसरा कारण यह है कि इस प्रक्रिया में बनाए गए एकमात्र पता लगाने योग्य कण [[एक्स-रे]] और [[बरमा इलेक्ट्रॉन]] हैं जो उत्तेजित परमाणु खोल द्वारा उत्सर्जित होते हैं। उनकी ऊर्जा की सीमा (~1-10 [[ कीव |कीव]] ) में, पृष्ठभूमि आमतौर पर ऊंची होती है। इस प्रकार, डबल इलेक्ट्रॉन कैप्चर का प्रायोगिक पता लगाना डबल बीटा क्षय की तुलना में अधिक कठिन है।


डबल इलेक्ट्रॉन कैप्चर के साथ-साथ बेटी नाभिक की उत्तेजना भी हो सकती है। बदले में, इसका डी-एक्सिटेशन, सैकड़ों केवी की ऊर्जा वाले फोटॉन के उत्सर्जन के साथ होता है।{{citation needed|date=July 2019}}
डबल इलेक्ट्रॉन कैप्चर के साथ-साथ बेटी नाभिक की उत्तेजना भी हो सकती है। बदले में, इसका डी-एक्सिटेशन, सैकड़ों केवी की ऊर्जा वाले फोटॉन के उत्सर्जन के साथ होता है।


== पॉज़िट्रॉन उत्सर्जन के साथ मोड ==
== पॉज़िट्रॉन उत्सर्जन के साथ मोड ==
यदि माँ और बेटी परमाणुओं के बीच द्रव्यमान का अंतर एक इलेक्ट्रॉन के दो द्रव्यमान (1.022 [[MeV]]) से अधिक है, तो प्रक्रिया में जारी ऊर्जा क्षय के एक अन्य तरीके की अनुमति देने के लिए पर्याप्त है, जिसे पॉज़िट्रॉन उत्सर्जन के साथ इलेक्ट्रॉन कैप्चर कहा जाता है। यह दोहरे इलेक्ट्रॉन कैप्चर के साथ होता है, परमाणु गुणों के आधार पर उनका [[शाखा अनुपात]] होता है।
यदि माँ और बेटी परमाणुओं के बीच द्रव्यमान का अंतर इलेक्ट्रॉन के दो द्रव्यमान (1.022 [[MeV]]) से अधिक है, तो प्रक्रिया में जारी ऊर्जा क्षय के अन्य तरीके की अनुमति देने के लिए पर्याप्त है, जिसे पॉज़िट्रॉन उत्सर्जन के साथ इलेक्ट्रॉन कैप्चर कहा जाता है। यह दोहरे इलेक्ट्रॉन कैप्चर के साथ होता है, परमाणु गुणों के आधार पर उनका [[शाखा अनुपात]] होता है।


जब द्रव्यमान अंतर चार इलेक्ट्रॉन द्रव्यमान (2.044 MeV) से अधिक होता है, तो तीसरे मोड, जिसे [[दोहरा पॉज़िट्रॉन क्षय]] कहा जाता है, की अनुमति है। केवल छह प्राकृतिक रूप से पाए जाने वाले न्यूक्लाइड{{which|date=May 2018}} इन तीन तरीकों से एक साथ क्षय हो सकता है।
जब द्रव्यमान अंतर चार इलेक्ट्रॉन द्रव्यमान (2.044 MeV) से अधिक होता है, तो तीसरे मोड, जिसे [[दोहरा पॉज़िट्रॉन क्षय]] कहा जाता है, की अनुमति है। केवल छह प्राकृतिक रूप से पाए जाने वाले न्यूक्लाइड इन तीन तरीकों से साथ क्षय हो सकता है।


== न्यूट्रिनोलेस डबल इलेक्ट्रॉन कैप्चर ==
== न्यूट्रिनोलेस डबल इलेक्ट्रॉन कैप्चर ==
दो इलेक्ट्रॉनों को पकड़ने और दो न्यूट्रिनो (दो-न्यूट्रिनो डबल इलेक्ट्रॉन कैप्चर) के उत्सर्जन के साथ ऊपर वर्णित प्रक्रिया को [[कण भौतिकी]] के [[मानक मॉडल]] द्वारा अनुमति दी गई है: कोई संरक्षण कानून ([[लेप्टान संख्या]] संरक्षण सहित) का उल्लंघन नहीं किया जाता है। हालाँकि, यदि लेप्टान संख्या संरक्षित नहीं है, या न्यूट्रिनो [[मेजराना फर्मियन]] है, तो एक अन्य प्रकार की प्रक्रिया हो सकती है: तथाकथित न्यूट्रिनोलेस डबल इलेक्ट्रॉन कैप्चर। इस मामले में, दो इलेक्ट्रॉनों को नाभिक द्वारा पकड़ लिया जाता है, लेकिन न्यूट्रिनो उत्सर्जित नहीं होते हैं।<ref>{{cite journal |journal=Nuclear Physics B |volume=223 |issue=1 |date=1985-08-15 |df=dmy-all |pages=15–28 |title=इलेक्ट्रॉन न्यूट्रिनो द्रव्यमान को मापने के लिए एक उपकरण के रूप में न्यूट्रिनोलेस डबल इलेक्ट्रॉन कैप्चर|author1=Bernabeu, J. |author2=de&nbsp;Rujula, A. |author3=Jarlskog, C. |doi=10.1016/0550-3213(83)90089-5 |bibcode=1983NuPhB.223...15B|url=https://cds.cern.ch/record/143368/files/198303194.pdf }}</ref> इस प्रक्रिया में निकलने वाली ऊर्जा को आंतरिक [[ब्रेक लगाना विकिरण]] गामा किरणों द्वारा ले जाया जाता है।
दो इलेक्ट्रॉनों को पकड़ने और दो न्यूट्रिनो (दो-न्यूट्रिनो डबल इलेक्ट्रॉन कैप्चर) के उत्सर्जन के साथ ऊपर वर्णित प्रक्रिया को [[कण भौतिकी]] के [[मानक मॉडल]] द्वारा अनुमति दी गई है: कोई संरक्षण कानून ([[लेप्टान संख्या]] संरक्षण सहित) का उल्लंघन नहीं किया जाता है। हालाँकि, यदि लेप्टान संख्या संरक्षित नहीं है, या न्यूट्रिनो [[मेजराना फर्मियन]] है, तो अन्य प्रकार की प्रक्रिया हो सकती है: तथाकथित न्यूट्रिनोलेस डबल इलेक्ट्रॉन कैप्चर। इस मामले में, दो इलेक्ट्रॉनों को नाभिक द्वारा पकड़ लिया जाता है, लेकिन न्यूट्रिनो उत्सर्जित नहीं होते हैं।<ref>{{cite journal |journal=Nuclear Physics B |volume=223 |issue=1 |date=1985-08-15 |df=dmy-all |pages=15–28 |title=इलेक्ट्रॉन न्यूट्रिनो द्रव्यमान को मापने के लिए एक उपकरण के रूप में न्यूट्रिनोलेस डबल इलेक्ट्रॉन कैप्चर|author1=Bernabeu, J. |author2=de&nbsp;Rujula, A. |author3=Jarlskog, C. |doi=10.1016/0550-3213(83)90089-5 |bibcode=1983NuPhB.223...15B|url=https://cds.cern.ch/record/143368/files/198303194.pdf }}</ref> इस प्रक्रिया में निकलने वाली ऊर्जा को आंतरिक [[ब्रेक लगाना विकिरण]] गामा किरणों द्वारा ले जाया जाता है।


उदाहरण:
उदाहरण:

Revision as of 09:02, 23 September 2023

डबल इलेक्ट्रॉन कैप्चर परमाणु नाभिक का क्षय मोड है।[1] कई न्यूक्लियॉन ए और परमाणु संख्या जेड वाले न्यूक्लाइड (ए, जेड) के लिए, डबल इलेक्ट्रॉन कैप्चर केवल तभी संभव है जब न्यूक्लाइड का द्रव्यमान (ए, जेड−2) कम हो।

क्षय की इस विधा में, दो कक्षीय इलेक्ट्रॉनों को नाभिक में दो प्रोटोन द्वारा कमजोर अंतःक्रिया के माध्यम से पकड़ लिया जाता है, जिससे दो न्यूट्रॉन बनते हैं (इस प्रक्रिया में दो न्युट्रीनो उत्सर्जित होते हैं)। चूँकि प्रोटॉन न्यूट्रॉन में बदल जाते हैं, न्यूट्रॉन की संख्या दो बढ़ जाती है, जबकि प्रोटॉन Z की संख्या दो घट जाती है, और परमाणु द्रव्यमान संख्या A अपरिवर्तित रहती है। परिणामस्वरूप, परमाणु संख्या को दो से कम करके, डबल इलेक्ट्रॉन कैप्चर न्यूक्लाइड को अलग रासायनिक तत्व में बदल देता है।[2]

उदाहरण:

130
56
Ba
 

e
 
→  130
54
Xe
 

ν
e


दुर्लभता

ज्यादातर मामलों में यह क्षय मोड अन्य, अधिक संभावित मोड द्वारा छिपाया जाता है जिसमें कम कण शामिल होते हैं, जैसे एकल इलेक्ट्रॉन पर कब्जा । जब अन्य सभी मोड "निषिद्ध" होते हैं (दृढ़ता से दबा दिए जाते हैं) तो डबल इलेक्ट्रॉन कैप्चर क्षय का मुख्य मोड बन जाता है। प्राकृतिक रूप से पाए जाने वाले 34 नाभिक मौजूद हैं जिनके बारे में माना जाता है कि वे दोहरे इलेक्ट्रॉन कैप्चर से गुजरते हैं, लेकिन इस प्रक्रिया की पुष्टि केवल तीन न्यूक्लाइड के क्षय में अवलोकन द्वारा की गई है: 78
36
Kr
, 130
56
Ba
, और 124
54
Xe
.[3]

एक कारण यह है कि दोहरे इलेक्ट्रॉन कैप्चर की संभावना बहुत कम है; इस विधा के लिए अर्ध-जीवन|अर्ध-जीवन 10 से काफी ऊपर है20 साल। दूसरा कारण यह है कि इस प्रक्रिया में बनाए गए एकमात्र पता लगाने योग्य कण एक्स-रे और बरमा इलेक्ट्रॉन हैं जो उत्तेजित परमाणु खोल द्वारा उत्सर्जित होते हैं। उनकी ऊर्जा की सीमा (~1-10 कीव ) में, पृष्ठभूमि आमतौर पर ऊंची होती है। इस प्रकार, डबल इलेक्ट्रॉन कैप्चर का प्रायोगिक पता लगाना डबल बीटा क्षय की तुलना में अधिक कठिन है।

डबल इलेक्ट्रॉन कैप्चर के साथ-साथ बेटी नाभिक की उत्तेजना भी हो सकती है। बदले में, इसका डी-एक्सिटेशन, सैकड़ों केवी की ऊर्जा वाले फोटॉन के उत्सर्जन के साथ होता है।

पॉज़िट्रॉन उत्सर्जन के साथ मोड

यदि माँ और बेटी परमाणुओं के बीच द्रव्यमान का अंतर इलेक्ट्रॉन के दो द्रव्यमान (1.022 MeV) से अधिक है, तो प्रक्रिया में जारी ऊर्जा क्षय के अन्य तरीके की अनुमति देने के लिए पर्याप्त है, जिसे पॉज़िट्रॉन उत्सर्जन के साथ इलेक्ट्रॉन कैप्चर कहा जाता है। यह दोहरे इलेक्ट्रॉन कैप्चर के साथ होता है, परमाणु गुणों के आधार पर उनका शाखा अनुपात होता है।

जब द्रव्यमान अंतर चार इलेक्ट्रॉन द्रव्यमान (2.044 MeV) से अधिक होता है, तो तीसरे मोड, जिसे दोहरा पॉज़िट्रॉन क्षय कहा जाता है, की अनुमति है। केवल छह प्राकृतिक रूप से पाए जाने वाले न्यूक्लाइड इन तीन तरीकों से साथ क्षय हो सकता है।

न्यूट्रिनोलेस डबल इलेक्ट्रॉन कैप्चर

दो इलेक्ट्रॉनों को पकड़ने और दो न्यूट्रिनो (दो-न्यूट्रिनो डबल इलेक्ट्रॉन कैप्चर) के उत्सर्जन के साथ ऊपर वर्णित प्रक्रिया को कण भौतिकी के मानक मॉडल द्वारा अनुमति दी गई है: कोई संरक्षण कानून (लेप्टान संख्या संरक्षण सहित) का उल्लंघन नहीं किया जाता है। हालाँकि, यदि लेप्टान संख्या संरक्षित नहीं है, या न्यूट्रिनो मेजराना फर्मियन है, तो अन्य प्रकार की प्रक्रिया हो सकती है: तथाकथित न्यूट्रिनोलेस डबल इलेक्ट्रॉन कैप्चर। इस मामले में, दो इलेक्ट्रॉनों को नाभिक द्वारा पकड़ लिया जाता है, लेकिन न्यूट्रिनो उत्सर्जित नहीं होते हैं।[4] इस प्रक्रिया में निकलने वाली ऊर्जा को आंतरिक ब्रेक लगाना विकिरण गामा किरणों द्वारा ले जाया जाता है।

उदाहरण:

130
56
Ba
 

e
 
→  130
54
Xe

क्षय की इस पद्धति को प्रयोगात्मक रूप से कभी नहीं देखा गया है, और यदि इसे देखा गया तो यह मानक मॉडल के विपरीत होगा।

यह भी देखें

संदर्भ

  1. Hirsch, M.; et al. (1994). "Nuclear structure calculation of β+β+, β+/EC and EC/EC decay matrix elements". Zeitschrift für Physik A. 347 (3): 151–160. Bibcode:1994ZPhyA.347..151H. doi:10.1007/BF01292371. S2CID 120191487.
  2. Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakahata, M.; Norita, T.; Ogawa, H.; Sato, K. (2018-05-01). "Improved search for two-neutrino double electron capture on 124Xe and 126Xe using particle identification in XMASS-I". Progress of Theoretical and Experimental Physics (in English). 2018 (5). doi:10.1093/ptep/pty053.
  3. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  4. Bernabeu, J.; de Rujula, A.; Jarlskog, C. (15 August 1985). "इलेक्ट्रॉन न्यूट्रिनो द्रव्यमान को मापने के लिए एक उपकरण के रूप में न्यूट्रिनोलेस डबल इलेक्ट्रॉन कैप्चर" (PDF). Nuclear Physics B. 223 (1): 15–28. Bibcode:1983NuPhB.223...15B. doi:10.1016/0550-3213(83)90089-5.


बाहरी संबंध