बंडल मानचित्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, '''बंडल मानचित्र''' एक ऐसा मानचित्र है जो रेशा बंडलों की [[श्रेणी (गणित)|श्रेणी]] में एक आकारिता होता है। बंडल मानचित्र के दो विभिन्न, परंतु गहरे संबंधित, अर्थ होते हैं जो इस बात पर निर्भर करते हैं कि क्या विचार में आने वाले रेशा बंडलों के पास एक समान आधार समष्टि होता है। इसी तरह, जिन भी श्रेणी के रेशा बंडल विचार किए जा रहे होते हैं, उन परिवर्तनों के साथ कई विविधताएं हो सकती हैं। पहले तीन खंडों में, हम शीर्षकीय रूप से संस्थानिक समष्टि के श्रेणी में सामान्य रेशा बंडलों को विचार करेंगे। तब चौथे खंड में, कुछ अन्य उदाहरण दिए जाएंगे
गणित में, '''बंडल मानचित्र''' फाइबर बंडलों की श्रेणी में एक आकारिता होता है। इसके दो अलग-अलग, परंतु मजबूत रूप में संबंधित, बंडल मैप के भाव होते हैं, जो इस पर निर्भर करते हैं कि क्या सवाल में दिए गए फाइबर बंडलों के पास एक सामान्य आधार समष्टि है। इसके अतिरिक्त, यह केवल उपलब्ध फाइबर बंडलों की कौन सी श्रेणी पर विचार किया जा रहा है, इसके आधार पर कई विभिन्न रूपांतरण हैं। पहले तीन खंडों में, हम संस्थानिक समष्टियो की श्रेणी में सामान्य फाइबर बंडलों को विचार करेंगे। पुनः  चौथे खंड में, कुछ अन्य उदाहरण दिए जाएंगे।


==सामान्य आधार के ऊपर बंडल मानचित्र==
==सामान्य आधार के ऊपर बंडल मानचित्र==

Revision as of 12:18, 10 August 2023

गणित में, बंडल मानचित्र फाइबर बंडलों की श्रेणी में एक आकारिता होता है। इसके दो अलग-अलग, परंतु मजबूत रूप में संबंधित, बंडल मैप के भाव होते हैं, जो इस पर निर्भर करते हैं कि क्या सवाल में दिए गए फाइबर बंडलों के पास एक सामान्य आधार समष्टि है। इसके अतिरिक्त, यह केवल उपलब्ध फाइबर बंडलों की कौन सी श्रेणी पर विचार किया जा रहा है, इसके आधार पर कई विभिन्न रूपांतरण हैं। पहले तीन खंडों में, हम संस्थानिक समष्टियो की श्रेणी में सामान्य फाइबर बंडलों को विचार करेंगे। पुनः चौथे खंड में, कुछ अन्य उदाहरण दिए जाएंगे।

सामान्य आधार के ऊपर बंडल मानचित्र

यदि और एक स्थान M पर रेशा बंडल हैं, तो E से F तक एक बंडल मानचित्र एक ऐसा नियमित चित्र है जिसका निम्नलिखित रूप होता है अर्थात आरेख

BundleMorphism-03.svg

परिवर्तित होता है। बंडल मानचित्र, M में किसी भी बिंदु x के लिए, रेशा को आरेखित करता है रेशा से x के ऊपर E का F के ऊपर x के साथ संबंधित रूप से आरेखित करता है।

रेशा बंडलों की सामान्य आकृतियाँ

यदि πE:EM और πF:FN एक-दूसरे स्थान M और N पर रेशा बंडल हों तब एक निरंतर मानचित्र जो कि बंडल E से बंडल F तक है और जिसमें एक निरंतर मानचित्र f:MN ऐसा है जिससे निम्नलिखित आरेख बना हो:

BundleMorphism-04.svg

इसका अर्थ है प्रत्याय, अर्थात् , दूसरे शब्दों में, रेशा संरक्षण, है, और f ई के रेशा के अंतर्गत स्थान पर उत्पन्न होने वाला आरेख है: क्योंकि πE प्रत्यायी है, f द्वारा अद्वितीय रूप से निर्धारित होता है। एक दिए गए f के लिए, ऐसा एक बंडल आरेख कहलाता है जो f को कवरिंग करता है।

दो धारणाओं के बीच संबंध

"यह परिभाषाओं से सीधे प्राप्त होता है कि M पर एक बंडल मानचित्र वही वस्तु है जो M के विशेषण को आच्छादन करने वाला एक बंडल मानचित्र है।"

"विपरीत रूप से, सामान्य बंडल मानचित्रों को निश्चित आधार स्थान पर बंडल मानचित्रों में पुलबैक बंडल के धारणा का उपयोग करके घटाया जा सकता है, यदि πF: FN एक N पर रेशा बंडल है और f:MN एक नियमित मानचित्र है, तो fF को F का पुलबैक बंडल कहते हैं जो M पर एक रेशा बंडल होता है, जिसका रेशा x पर (fF)x = Ff(x) दिया गया होता है। तब यह फालोट उत्पन्न होता है कि E से F तक किसी भी बंडल मानचित्र को M पर f*F तक किसी भी बंडल मानचित्र के रूप में कवर करना एक जैसा ही होता है।"

विकल्प और सामान्यीकरण

बंडल मानचित्र की सामान्य अवधारणा में दो प्रकार की भिन्नताएँ हैं।

"पहले, व्यक्तियों की अलग श्रेणी में रेशा बंडल का विचार किया जा सकता है। इससे, उदाहरण के लिए, स्मूथ मानचित्र के ऊपर स्मूथ रेशा बंडलों के बीच एक स्मूथ बंडल मानचित्र के धारणा तक पहुंचा जाता है।"

"दूसरे, रेशा बंडलों में अतिरिक्त संरचना के साथ विचार किया जा सकता है, और इन रेशा को सुरक्षित करने वाले बंडल मानचित्रों पर ध्यान केंद्रित किया जा सकता है। इससे, उदाहरण के लिए, सदिश स्थानों के साथ रेशा बंडलों के बीच एक सदिश बंडल समान्तर की धारणा तक पहुंचा जाता है, जिसमें बंडल मानचित्र φ को प्रत्येक रेशा पर एक रैखिक मानचित्र के रूप में होने की आवश्यकता होती है। इस स्थिति में, ऐसे बंडल मानचित्र φ को सदिश बंडल होम(E, f*F) का भी एक सेक्शन माना जा सकता है, जिसका मानचित्र होम (Ex, Ff(x)) होता है, जो रैखिक मानचित्र को 'Ex' से Ff(x) भी दर्शाया गया है।