बंडल मानचित्र: Difference between revisions
Line 14: | Line 14: | ||
==दो धारणाओं के बीच संबंध== | ==दो धारणाओं के बीच संबंध== | ||
परिभाषाओं से सीधे रूप में यह पाया जा सकता है कि ''M'' पर एक बंडल मैप (पहले मान में) वही बात है जो ''M'' के पहचान मैप को कवर करता है। | |||
विपरीत रूप से, सामान्य बंडल मैप को निश्चित आधार अंतर्वाहन के उपयोग से एक मुख्य आधार स्थल पर बंडल मैप में घटाया जा सकता है, जिसकी विन्यासिकता की नोटियन के द्वारा होता है। यदि <math>\pi_{F}:F\rightarrow N</math> एक फाइबर बंडल ''N'' पर हो और <math>f:M\rightarrow N</math> एक नियमित मान हो, तो "f की पुलबैक" ''F'' का एक फाइबर बंडल ''M'' पर होता है जिसका फाइबर ''x'' पर इस प्रकार होता है (''f''<sup>*</sup>''F'')<sub>''x''</sub> = ''F''<sub>''f''(''x'')</sub>। यहाँ तक पहुँचा जाता है कि एक ''M'' पर ''f'' की कवरिंग वाला बंडल मैप ''E'' से ''F'' की तरह कुछ होने के बराबर है। | |||
[[Category:Created On 25/07/2023|Bundle Map]] | [[Category:Created On 25/07/2023|Bundle Map]] |
Revision as of 12:37, 10 August 2023
गणित में, बंडल मानचित्र फाइबर बंडलों की श्रेणी में एक आकारिता होता है। इसके दो अलग-अलग, परंतु मजबूत रूप में संबंधित, बंडल मैप के भाव होते हैं, जो इस पर निर्भर करते हैं कि क्या सवाल में दिए गए फाइबर बंडलों के पास एक सामान्य आधार समष्टि है। इसके अतिरिक्त, यह केवल उपलब्ध फाइबर बंडलों की कौन सी श्रेणी पर विचार किया जा रहा है, इसके आधार पर कई विभिन्न रूपांतरण हैं। पहले तीन खंडों में, हम संस्थानिक समष्टियो की श्रेणी में सामान्य फाइबर बंडलों को विचार करेंगे। पुनः चौथे खंड में, कुछ अन्य उदाहरण दिए जाएंगे।
सामान्य आधार के ऊपर बंडल मानचित्र
यदि और एक स्थान M पर फाइबर बंडल हों, तो एक बंडल मैप 'E' से 'F' 'पर 'M' के लिए एक नियमित मानचित्र होती है जिसका पालमूल माना जाता है। अर्थात, यह आरेख होता है:
समघटक आरेख परिपथ में सहेजता है। समतुल्य रूप से, किसी भी बिंदु x के लिए, नियमित मानचित्र के बिंदु को बिंदु परिपथ में आरेखित करता है।
रेशा बंडलों की सामान्य आकृतियाँ
यदि और स्थानों M और N पर फाइबर बंडल हों, तो एक नियमित नक्शा एक बंडल मैप कहलाता है अगर एक ऐसा नियमित नक्शा हो जिससे चित्रण होता है:
समतुल्यता का चित्रण, अर्थात् होता है। दूसरे शब्दों में, फाइबर-संरक्षणकारी होता है, और f E के फाइबरों की जगह के नक्शे पर उत्पन्न होने वाला मैप होता है: क्योंकि प्रतिकूलक होता है, इसलिए द्वारा अनुबंधित किया जाता है। एक दिए गए f के लिए, ऐसा एक बंडल मैप कहलाता है जिसे फाइबर कवरिंग f'कहा जाता है।
दो धारणाओं के बीच संबंध
परिभाषाओं से सीधे रूप में यह पाया जा सकता है कि M पर एक बंडल मैप (पहले मान में) वही बात है जो M के पहचान मैप को कवर करता है।
विपरीत रूप से, सामान्य बंडल मैप को निश्चित आधार अंतर्वाहन के उपयोग से एक मुख्य आधार स्थल पर बंडल मैप में घटाया जा सकता है, जिसकी विन्यासिकता की नोटियन के द्वारा होता है। यदि एक फाइबर बंडल N पर हो और एक नियमित मान हो, तो "f की पुलबैक" F का एक फाइबर बंडल M पर होता है जिसका फाइबर x पर इस प्रकार होता है (f*F)x = Ff(x)। यहाँ तक पहुँचा जाता है कि एक M पर f की कवरिंग वाला बंडल मैप E से F की तरह कुछ होने के बराबर है।
विकल्प और सामान्यीकरण
बंडल मानचित्र की सामान्य अवधारणा में दो प्रकार की भिन्नताएँ हैं।
"पहले, व्यक्तियों की अलग श्रेणी में रेशा बंडल का विचार किया जा सकता है। इससे, उदाहरण के लिए, स्मूथ मानचित्र के ऊपर स्मूथ रेशा बंडलों के बीच एक स्मूथ बंडल मानचित्र के धारणा तक पहुंचा जाता है।"
"दूसरे, रेशा बंडलों में अतिरिक्त संरचना के साथ विचार किया जा सकता है, और इन रेशा को सुरक्षित करने वाले बंडल मानचित्रों पर ध्यान केंद्रित किया जा सकता है। इससे, उदाहरण के लिए, सदिश स्थानों के साथ रेशा बंडलों के बीच एक सदिश बंडल समान्तर की धारणा तक पहुंचा जाता है, जिसमें बंडल मानचित्र φ को प्रत्येक रेशा पर एक रैखिक मानचित्र के रूप में होने की आवश्यकता होती है। इस स्थिति में, ऐसे बंडल मानचित्र φ को सदिश बंडल होम(E, f*F) का भी एक सेक्शन माना जा सकता है, जिसका मानचित्र होम (Ex, Ff(x)) होता है, जो रैखिक मानचित्र को 'Ex' से Ff(x) भी दर्शाया गया है।