मेम्ब्रेन रिएक्टर: Difference between revisions
m (Arti Shah moved page झिल्ली रिएक्टर to मेम्ब्रेन रिएक्टर without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:Membrane reactor.png|thumb|upright=1.3|एक झिल्ली रिएक्टर का रेखाचित्र]]मेम्ब्रेन रिएक्टर एक भौतिक उपकरण है जो [[अभिकारक]]ों को जोड़ने या प्रतिक्रिया के उत्पादों को हटाने के लिए [[झिल्ली प्रौद्योगिकी]] के साथ रासायनिक रूपांतरण प्रक्रिया को जोड़ता है।{{sfn|Gallucci|2011|p=1}} | [[File:Membrane reactor.png|thumb|upright=1.3|एक झिल्ली रिएक्टर का रेखाचित्र]]मेम्ब्रेन रिएक्टर एक भौतिक उपकरण है जो [[अभिकारक]]ों को जोड़ने या प्रतिक्रिया के उत्पादों को हटाने के लिए [[झिल्ली प्रौद्योगिकी]] के साथ रासायनिक रूपांतरण प्रक्रिया को जोड़ता है।{{sfn|Gallucci|2011|p=1}} | ||
झिल्ली का उपयोग करने वाले रासायनिक रिएक्टरों को | झिल्ली का उपयोग करने वाले रासायनिक रिएक्टरों को सामान्यतः झिल्ली रिएक्टर कहा जाता है। झिल्ली का उपयोग विभिन्न कार्यों के लिए किया जा सकता है:{{sfn|Basile|2016|p=9}} | ||
* पृथक्करण | * पृथक्करण | ||
** [[उत्पाद (रसायन विज्ञान)]] का चयनात्मक निष्कर्षण | ** [[उत्पाद (रसायन विज्ञान)]] का चयनात्मक निष्कर्षण | ||
** उत्प्रेरक का प्रतिधारण | ** उत्प्रेरक का प्रतिधारण | ||
* अभिकारक का वितरण/खुराक | * अभिकारक का वितरण/खुराक | ||
* उत्प्रेरक समर्थन ( | * उत्प्रेरक समर्थन (अधिकांशतः अभिकारकों के वितरण के साथ संयुक्त) | ||
झिल्ली रिएक्टर एक चरण में दो [[इकाई संचालन]] के संयोजन के लिए एक उदाहरण हैं, उदाहरण के लिए, रासायनिक प्रतिक्रिया के साथ झिल्ली निस्पंदन।{{sfn|De Falco|2011|p=2}} एक अभिकारक के चयनात्मक निष्कर्षण के साथ प्रतिक्रिया अनुभाग का एकीकरण संतुलन मूल्य की तुलना में [[रूपांतरण (रसायन विज्ञान)]] को बढ़ाने की अनुमति देता है। यह विशेषता झिल्ली रिएक्टरों को संतुलन-सीमित [[एंडोथर्मिक प्रतिक्रिया]]एं करने के लिए उपयुक्त बनाती है।{{sfn|De Falco|2011|p=110}} | झिल्ली रिएक्टर एक चरण में दो [[इकाई संचालन]] के संयोजन के लिए एक उदाहरण हैं, उदाहरण के लिए, रासायनिक प्रतिक्रिया के साथ झिल्ली निस्पंदन।{{sfn|De Falco|2011|p=2}} एक अभिकारक के चयनात्मक निष्कर्षण के साथ प्रतिक्रिया अनुभाग का एकीकरण संतुलन मूल्य की तुलना में [[रूपांतरण (रसायन विज्ञान)]] को बढ़ाने की अनुमति देता है। यह विशेषता झिल्ली रिएक्टरों को संतुलन-सीमित [[एंडोथर्मिक प्रतिक्रिया]]एं करने के लिए उपयुक्त बनाती है।{{sfn|De Falco|2011|p=110}} | ||
==लाभ और महत्वपूर्ण मुद्दे== | ==लाभ और महत्वपूर्ण मुद्दे== | ||
रिएक्टर के अंदर चयनात्मक झिल्लियों से कई लाभ होते हैं: रिएक्टर अनुभाग कई [[धारा को विपरीत मोड़ने की प्रक्रिया]] को प्रतिस्थापित करता है। इसके | रिएक्टर के अंदर चयनात्मक झिल्लियों से कई लाभ होते हैं: रिएक्टर अनुभाग कई [[धारा को विपरीत मोड़ने की प्रक्रिया]] को प्रतिस्थापित करता है। इसके अतिरिक्त, किसी उत्पाद को हटाने से थर्मोडायनामिक्स सीमाओं को पार करने की अनुमति मिलती है।{{sfn|De Falco|2011|p=3}} इस प्रकार, अभिकारकों के उच्च रूपांतरण तक पहुंचना या कम तापमान के साथ समान रूपांतरण प्राप्त करना संभव है।{{sfn|De Falco|2011|p=3}} | ||
[[प्रतिवर्ती प्रतिक्रिया]]एं | [[प्रतिवर्ती प्रतिक्रिया]]एं सामान्यतः थर्मोडायनामिक्स द्वारा सीमित होती हैं: जब प्रत्यक्ष और विपरीत प्रतिक्रियाएं, जिनकी दर अभिकारकों और उत्पाद सांद्रता पर निर्भर करती है, संतुलित होती हैं, तो एक [[रासायनिक संतुलन]] स्थिति प्राप्त होती है।{{sfn|De Falco|2011|p=3}} यदि तापमान और दबाव निश्चित हैं, तो यह संतुलन स्थिति उत्पादों बनाम अभिकारकों की सांद्रता के अनुपात के लिए एक बाधा है, जो उच्च रूपांतरण तक पहुंचने की संभावना को बाधित करती है।{{sfn|De Falco|2011|p=3}} | ||
प्रतिक्रिया के उत्पाद को हटाकर इस सीमा को पार किया जा सकता है: इस | प्रतिक्रिया के उत्पाद को हटाकर इस सीमा को पार किया जा सकता है: इस प्रकार, सिस्टम संतुलन तक नहीं पहुंच सकता है और प्रतिक्रिया जारी रहती है, उच्च रूपांतरण (या कम तापमान पर समान रूपांतरण) तक पहुंचती है।{{sfn|De Falco|2011|p=7}} | ||
फिर भी, लंबी स्थिरता वाली झिल्लियों को डिजाइन करने में तकनीकी कठिनाइयों और झिल्लियों की उच्च लागत के कारण औद्योगिक व्यावसायीकरण में कई बाधाएँ हैं।{{sfn|Basile|2016|p=12}} इसके | फिर भी, लंबी स्थिरता वाली झिल्लियों को डिजाइन करने में तकनीकी कठिनाइयों और झिल्लियों की उच्च लागत के कारण औद्योगिक व्यावसायीकरण में कई बाधाएँ हैं।{{sfn|Basile|2016|p=12}} इसके अतिरिक्त, ऐसी प्रक्रिया की कमी है जो प्रौद्योगिकी का नेतृत्व करती है, यदि हाल के वर्षों में इस तकनीक को हाइड्रोजन उत्पादन और हाइड्रोकार्बन डिहाइड्रोजनेशन के लिए सफलतापूर्वक लागू किया गया हो।{{sfn|Basile|2016|p=13}} | ||
== रिएक्टर विन्यास == | == रिएक्टर विन्यास == | ||
[[File:Packed bed and fluidized bed membrane reactors.png|thumb|upright=1.5|पैक्ड बेड और द्रवीकृत बेड मेम्ब्रेन रिएक्टर]] | [[File:Packed bed and fluidized bed membrane reactors.png|thumb|upright=1.5|पैक्ड बेड और द्रवीकृत बेड मेम्ब्रेन रिएक्टर]]सामान्यतः, झिल्ली रिएक्टरों को झिल्ली की स्थिति और रिएक्टर विन्यास के आधार पर वर्गीकृत किया जा सकता है।{{sfn|Gallucci|2011|p=1}} सामान्यतः अंदर एक उत्प्रेरक होता है: यदि उत्प्रेरक झिल्ली के अंदर स्थापित होता है, तो रिएक्टर को उत्प्रेरक झिल्ली रिएक्टर (सीएमआर) कहा जाता है;{{sfn|Gallucci|2011|p=1}} यदि उत्प्रेरक (और समर्थन) को अंदर पैक और स्थिर किया जाता है, तो रिएक्टर को पैक्ड बेड मेम्ब्रेन रिएक्टर कहा जाता है; यदि गैस की गति पर्याप्त अधिक है, और कण का आकार पर्याप्त छोटा है, तो बिस्तर का द्रवीकरण होता है और रिएक्टर को द्रवीकृत बिस्तर झिल्ली रिएक्टर कहा जाता है।{{sfn|Gallucci|2011|p=1}} अन्य प्रकार के रिएक्टरों का नाम झिल्ली सामग्री से लिया गया है, उदाहरण के लिए, [[जिओलाइट झिल्ली]] रिएक्टर। | ||
इन विन्यासों के बीच, हाल के वर्षों में, विशेष रूप से हाइड्रोजन उत्पादन में, निश्चित बिस्तर और द्रवीकृत बिस्तर पर अधिक ध्यान दिया गया है: इन | इन विन्यासों के बीच, हाल के वर्षों में, विशेष रूप से हाइड्रोजन उत्पादन में, निश्चित बिस्तर और द्रवीकृत बिस्तर पर अधिक ध्यान दिया गया है: इन स्थितियों में मानक रिएक्टर बस प्रतिक्रिया समष्टि के अंदर झिल्ली के साथ एकीकृत होता है।<ref name="gal17">{{cite journal |last1=Gallucci |first1=Fausto |last2=Medrano |first2=Jose |last3=Fernandez |first3=Ekain |last4=Melendez |first4=Jon |last5=Van Sint Annaland |first5=Martin |last6=Pacheco |first6=Alfredo |title=हाइड्रोजन शुद्धिकरण और उत्पादन के लिए उच्च तापमान पीडी-आधारित झिल्ली और झिल्ली रिएक्टरों पर अग्रिम|journal=Journal of Membrane Science and Research |date=1 July 2017 |volume=3 |issue=3 |pages=142–156 |doi=10.22079/jmsr.2017.23644 |issn=2476-5406}}</ref> | ||
== हाइड्रोजन उत्पादन के लिए झिल्ली रिएक्टर == | == हाइड्रोजन उत्पादन के लिए झिल्ली रिएक्टर == | ||
आज हाइड्रोजन का उपयोग मुख्य रूप से रासायनिक उद्योग में अमोनिया उत्पादन और मेथनॉल संश्लेषण में एक अभिकारक के रूप में और हाइड्रोक्रैकिंग के लिए रिफाइनरी प्रक्रियाओं में किया जाता है।{{sfn|De Falco|2011|p=103}} इसके | आज हाइड्रोजन का उपयोग मुख्य रूप से रासायनिक उद्योग में अमोनिया उत्पादन और मेथनॉल संश्लेषण में एक अभिकारक के रूप में और हाइड्रोक्रैकिंग के लिए रिफाइनरी प्रक्रियाओं में किया जाता है।{{sfn|De Falco|2011|p=103}} इसके अतिरिक्त, ऊर्जा वाहक और ईंधन कोशिकाओं में ईंधन के रूप में इसके उपयोग में रुचि बढ़ रही है।{{sfn|De Falco|2011|p=103}} | ||
कम लागत और इस तथ्य के कारण कि यह एक परिपक्व तकनीक है, वर्तमान में 50% से अधिक हाइड्रोजन प्राकृतिक गैस के भाप सुधार से उत्पन्न होता है।<ref>{{cite journal |last1=Di Marcoberardino |first1=Gioele |last2=Foresti |first2=Stefano |last3=Binotti |first3=Marco |last4=Manzolini |first4=Giampaolo |title=विकेन्द्रीकृत हाइड्रोजन उत्पादन के लिए बायोगैस झिल्ली सुधारक की क्षमता|journal=Chemical Engineering and Processing - Process Intensification |date=July 2018 |volume=129 |pages=131–141 |doi=10.1016/j.cep.2018.04.023|doi-access=free }}</ref> पारंपरिक प्रक्रियाओं में प्राकृतिक गैस से सिनगैस का उत्पादन करने के लिए एक भाप सुधार अनुभाग, दो जल गैस शिफ्ट रिएक्टर होते हैं जो सिनगैस में हाइड्रोजन को बढ़ाते हैं और हाइड्रोजन शुद्धिकरण के लिए एक दबाव स्विंग सोखना इकाई होते हैं।{{sfn|De Falco|2011|p=108}} मेम्ब्रेन रिएक्टर आर्थिक और पर्यावरणीय दोनों लाभों के साथ, इन सभी वर्गों को एक ही इकाई में | कम लागत और इस तथ्य के कारण कि यह एक परिपक्व तकनीक है, वर्तमान में 50% से अधिक हाइड्रोजन प्राकृतिक गैस के भाप सुधार से उत्पन्न होता है।<ref>{{cite journal |last1=Di Marcoberardino |first1=Gioele |last2=Foresti |first2=Stefano |last3=Binotti |first3=Marco |last4=Manzolini |first4=Giampaolo |title=विकेन्द्रीकृत हाइड्रोजन उत्पादन के लिए बायोगैस झिल्ली सुधारक की क्षमता|journal=Chemical Engineering and Processing - Process Intensification |date=July 2018 |volume=129 |pages=131–141 |doi=10.1016/j.cep.2018.04.023|doi-access=free }}</ref> पारंपरिक प्रक्रियाओं में प्राकृतिक गैस से सिनगैस का उत्पादन करने के लिए एक भाप सुधार अनुभाग, दो जल गैस शिफ्ट रिएक्टर होते हैं जो सिनगैस में हाइड्रोजन को बढ़ाते हैं और हाइड्रोजन शुद्धिकरण के लिए एक दबाव स्विंग सोखना इकाई होते हैं।{{sfn|De Falco|2011|p=108}} मेम्ब्रेन रिएक्टर आर्थिक और पर्यावरणीय दोनों लाभों के साथ, इन सभी वर्गों को एक ही इकाई में सम्मिलित करते हुए एक प्रक्रिया को गहन बनाते हैं।<ref>{{cite journal |last1=Di Marcoberardino |first1=Gioele |last2=Liao |first2=Xun |last3=Dauriat |first3=Arnaud |last4=Binotti |first4=Marco |last5=Manzolini |first5=Giampaolo |title=हाइड्रोजन उत्पादन के लिए एक अभिनव बायोगैस झिल्ली सुधारक का जीवन चक्र मूल्यांकन और आर्थिक विश्लेषण|journal=Processes |date=8 February 2019 |volume=7 |issue=2 |pages=86 |doi=10.3390/pr7020086|doi-access=free }}</ref> | ||
Line 36: | Line 36: | ||
हाइड्रोजन उत्पादन उद्योग के लिए उपयुक्त होने के लिए, झिल्लियों में उच्च प्रवाह, हाइड्रोजन के प्रति उच्च चयनात्मकता, कम लागत और उच्च स्थिरता होनी चाहिए।<ref name="gal13">{{cite journal |last1=Gallucci |first1=Fausto |last2=Fernandez |first2=Ekain |last3=Corengia |first3=Pablo |last4=van Sint Annaland |first4=Martin |title=हाइड्रोजन उत्पादन के लिए झिल्लियों और झिल्ली रिएक्टरों पर हालिया प्रगति|journal=Chemical Engineering Science |date=April 2013 |volume=92 |pages=40–66 |doi=10.1016/j.ces.2013.01.008}}</ref> झिल्लियों में, घने अकार्बनिक सबसे उपयुक्त होते हैं, जिनकी चयनात्मकता छिद्रपूर्ण झिल्लियों की तुलना में अधिक होती है।<ref>{{cite journal |last1=Cardoso |first1=Simão P |last2=Azenha |first2=Ivo S |last3=Lin |first3=Zhi |last4=Portugal |first4=Inês |last5=Rodrigues |first5=Alírio E |last6=Silva |first6=Carlos M |title=हाइड्रोजन पृथक्करण के लिए अकार्बनिक झिल्ली|journal=Separation & Purification Reviews |date=4 December 2017 |volume=47 |issue=3 |pages=229–266 |doi=10.1080/15422119.2017.1383917}}</ref> सघन झिल्लियों में, सिरेमिक झिल्लियों की तुलना में उच्च फ्लक्स के कारण धात्विक झिल्लियों का सबसे अधिक उपयोग किया जाता है।<ref name="gal17" /> | हाइड्रोजन उत्पादन उद्योग के लिए उपयुक्त होने के लिए, झिल्लियों में उच्च प्रवाह, हाइड्रोजन के प्रति उच्च चयनात्मकता, कम लागत और उच्च स्थिरता होनी चाहिए।<ref name="gal13">{{cite journal |last1=Gallucci |first1=Fausto |last2=Fernandez |first2=Ekain |last3=Corengia |first3=Pablo |last4=van Sint Annaland |first4=Martin |title=हाइड्रोजन उत्पादन के लिए झिल्लियों और झिल्ली रिएक्टरों पर हालिया प्रगति|journal=Chemical Engineering Science |date=April 2013 |volume=92 |pages=40–66 |doi=10.1016/j.ces.2013.01.008}}</ref> झिल्लियों में, घने अकार्बनिक सबसे उपयुक्त होते हैं, जिनकी चयनात्मकता छिद्रपूर्ण झिल्लियों की तुलना में अधिक होती है।<ref>{{cite journal |last1=Cardoso |first1=Simão P |last2=Azenha |first2=Ivo S |last3=Lin |first3=Zhi |last4=Portugal |first4=Inês |last5=Rodrigues |first5=Alírio E |last6=Silva |first6=Carlos M |title=हाइड्रोजन पृथक्करण के लिए अकार्बनिक झिल्ली|journal=Separation & Purification Reviews |date=4 December 2017 |volume=47 |issue=3 |pages=229–266 |doi=10.1080/15422119.2017.1383917}}</ref> सघन झिल्लियों में, सिरेमिक झिल्लियों की तुलना में उच्च फ्लक्स के कारण धात्विक झिल्लियों का सबसे अधिक उपयोग किया जाता है।<ref name="gal17" /> | ||
हाइड्रोजन पृथक्करण झिल्लियों में सबसे अधिक उपयोग की जाने वाली सामग्री पैलेडियम है, विशेष रूप से चांदी के साथ इसकी मिश्र धातु। यह धातु, | हाइड्रोजन पृथक्करण झिल्लियों में सबसे अधिक उपयोग की जाने वाली सामग्री पैलेडियम है, विशेष रूप से चांदी के साथ इसकी मिश्र धातु। यह धातु, यदि अन्य धातुओं की तुलना में अधिक महंगी है, हाइड्रोजन के प्रति बहुत अधिक घुलनशीलता दिखाती है।{{sfn|Basile|2016|p=7}} | ||
पैलेडियम झिल्ली के अंदर हाइड्रोजन का परिवहन तंत्र एक समाधान/प्रसार तंत्र का अनुसरण करता है: हाइड्रोजन अणु को झिल्ली की सतह पर सोख लिया जाता है, फिर यह हाइड्रोजन परमाणुओं में विभाजित हो जाता है; ये परमाणु विसरण के माध्यम से झिल्ली के पार जाते हैं और फिर झिल्ली के कम दबाव वाले | पैलेडियम झिल्ली के अंदर हाइड्रोजन का परिवहन तंत्र एक समाधान/प्रसार तंत्र का अनुसरण करता है: हाइड्रोजन अणु को झिल्ली की सतह पर सोख लिया जाता है, फिर यह हाइड्रोजन परमाणुओं में विभाजित हो जाता है; ये परमाणु विसरण के माध्यम से झिल्ली के पार जाते हैं और फिर झिल्ली के कम दबाव वाले भाग पर हाइड्रोजन अणु में पुनः संयोजित होते हैं; फिर, यह सतह से अवशोषित हो जाता है।<ref name="gal13" /> | ||
हाल के वर्षों में, हाइड्रोजन उत्पादन के लिए द्रवीकृत बिस्तर झिल्ली रिएक्टरों के अंदर पैलेडियम झिल्ली के एकीकरण का अध्ययन करने के लिए कई कार्य किए गए थे।<ref>{{cite journal |last1=Arratibel |first1=Alba |last2=Pacheco Tanaka |first2=Alfredo |last3=Laso |first3=Iker |last4=van Sint Annaland |first4=Martin |last5=Gallucci |first5=Fausto |title=द्रवयुक्त बेड मेम्ब्रेन रिएक्टरों में हाइड्रोजन उत्पादन के लिए पीडी-आधारित डबल-स्किन्ड मेम्ब्रेन का विकास|journal=Journal of Membrane Science |date=March 2018 |volume=550 |pages=536–544 |doi=10.1016/j.memsci.2017.10.064}}</ref> | हाल के वर्षों में, हाइड्रोजन उत्पादन के लिए द्रवीकृत बिस्तर झिल्ली रिएक्टरों के अंदर पैलेडियम झिल्ली के एकीकरण का अध्ययन करने के लिए कई कार्य किए गए थे।<ref>{{cite journal |last1=Arratibel |first1=Alba |last2=Pacheco Tanaka |first2=Alfredo |last3=Laso |first3=Iker |last4=van Sint Annaland |first4=Martin |last5=Gallucci |first5=Fausto |title=द्रवयुक्त बेड मेम्ब्रेन रिएक्टरों में हाइड्रोजन उत्पादन के लिए पीडी-आधारित डबल-स्किन्ड मेम्ब्रेन का विकास|journal=Journal of Membrane Science |date=March 2018 |volume=550 |pages=536–544 |doi=10.1016/j.memsci.2017.10.064}}</ref> | ||
Line 49: | Line 49: | ||
===इलेक्ट्रोकेमिकल झिल्ली रिएक्टर ईसीएमआर=== | ===इलेक्ट्रोकेमिकल झिल्ली रिएक्टर ईसीएमआर=== | ||
क्लोराइड का उत्पादन (Cl<sub>2</sub>) और NaCl से कास्टिक सोडा NaOH को [[पॉलीइलेक्ट्रोलाइट]] झिल्ली का संचालन करने वाले प्रोटॉन का उपयोग करके क्लोर-क्षार-प्रक्रिया द्वारा औद्योगिक रूप से किया जाता है। इसका उपयोग बड़े पैमाने पर किया जाता है और इसने डायाफ्राम इलेक्ट्रोलिसिस का | क्लोराइड का उत्पादन (Cl<sub>2</sub>) और NaCl से कास्टिक सोडा NaOH को [[पॉलीइलेक्ट्रोलाइट]] झिल्ली का संचालन करने वाले प्रोटॉन का उपयोग करके क्लोर-क्षार-प्रक्रिया द्वारा औद्योगिक रूप से किया जाता है। इसका उपयोग बड़े पैमाने पर किया जाता है और इसने डायाफ्राम इलेक्ट्रोलिसिस का समष्टि ले लिया है। रासायनिक रूपांतरण के समय कठोर परिस्थितियों का सामना करने के लिए नेफियन को एक बाइलेयर झिल्ली के रूप में विकसित किया गया है। | ||
===जैविक प्रणालियाँ=== | ===जैविक प्रणालियाँ=== | ||
जैविक प्रणालियों में, झिल्ली कई आवश्यक कार्य पूरा करती है। जैविक कोशिका (जीव विज्ञान) का विभाजन झिल्लियों द्वारा होता है। अर्ध-पारगम्य झिल्ली | अर्ध-पारगम्यता प्रतिक्रियाओं और प्रतिक्रिया वातावरण को | जैविक प्रणालियों में, झिल्ली कई आवश्यक कार्य पूरा करती है। जैविक कोशिका (जीव विज्ञान) का विभाजन झिल्लियों द्वारा होता है। अर्ध-पारगम्य झिल्ली | अर्ध-पारगम्यता प्रतिक्रियाओं और प्रतिक्रिया वातावरण को भिन्न करने की अनुमति देती है। कई [[एंजाइमों]] झिल्ली से बंधे होते हैं और अधिकांशतः झिल्ली के माध्यम से बड़े पैमाने पर परिवहन [[कृत्रिम झिल्ली]] की प्रकार निष्क्रिय होने के अतिरिक्त सक्रिय होता है, जिससे कोशिका को प्रोटॉन या पानी के सक्रिय परिवहन का उपयोग करके उदाहरण के लिए ग्रेडिएंट बनाए रखने की अनुमति मिलती है। | ||
प्राकृतिक झिल्ली का उपयोग रासायनिक प्रतिक्रिया के लिए उपयोग का पहला उदाहरण है। सुअर के मूत्राशय की चयनात्मक पारगम्यता का उपयोग करके, ले चैटेलियर के सिद्धांत के अनुसार संक्षेपण उत्पादों की ओर प्रतिक्रिया की संतुलन स्थिति को | प्राकृतिक झिल्ली का उपयोग रासायनिक प्रतिक्रिया के लिए उपयोग का पहला उदाहरण है। सुअर के मूत्राशय की चयनात्मक पारगम्यता का उपयोग करके, ले चैटेलियर के सिद्धांत के अनुसार संक्षेपण उत्पादों की ओर प्रतिक्रिया की संतुलन स्थिति को समष्टि ांतरित करने के लिए संक्षेपण प्रतिक्रिया से पानी निकाला जा सकता है। | ||
===आकार बहिष्करण: [[एंजाइम]] झिल्ली रिएक्टर=== | ===आकार बहिष्करण: [[एंजाइम]] झिल्ली रिएक्टर=== | ||
चूंकि एंजाइम [[ मैक्रो मोलेक्यूल ]]्स होते हैं और | चूंकि एंजाइम [[ मैक्रो मोलेक्यूल ]]्स होते हैं और अधिकांशतः अभिकारकों से आकार में बहुत भिन्न होते हैं, उन्हें अल्ट्रा- या नैनोफिल्टरेशन कृत्रिम झिल्ली के साथ आकार बहिष्करण झिल्ली निस्पंदन द्वारा भिन्न किया जा सकता है। इसका उपयोग औद्योगिक पैमाने पर रासायनिक रूप से व्युत्पन्न [[रेस्मिक]] [[ एमिनो एसिड ]] के गतिज रेसिमिक रिज़ॉल्यूशन द्वारा एनैन्टीओप्योर अमीनो एसिड के उत्पादन के लिए किया जाता है। सबसे प्रमुख उदाहरण 400t/a के पैमाने पर एल-[[मेथिओनिन]] का उत्पादन है।<ref>Industrial Biotransformations, 2nd, Completely Revised and Enlarged Edition | ||
Andreas Liese (Editor), Karsten Seelbach (Editor), Christian Wandrey (Editor) | Andreas Liese (Editor), Karsten Seelbach (Editor), Christian Wandrey (Editor) | ||
{{ISBN|978-3-527-31001-2}}.</ref> उत्प्रेरक के [[स्थिर एंजाइम]] के अन्य रूपों की तुलना में इस विधि का लाभ यह है कि एंजाइम गतिविधि या चयनात्मकता में परिवर्तन नहीं करते हैं क्योंकि यह घुलनशील रहता है। | {{ISBN|978-3-527-31001-2}}.</ref> उत्प्रेरक के [[स्थिर एंजाइम]] के अन्य रूपों की तुलना में इस विधि का लाभ यह है कि एंजाइम गतिविधि या चयनात्मकता में परिवर्तन नहीं करते हैं क्योंकि यह घुलनशील रहता है। | ||
सिद्धांत को सभी मैक्रोमोलेक्यूलर उत्प्रेरक पर लागू किया जा सकता है जिन्हें निस्पंदन के माध्यम से अन्य अभिकारकों से | सिद्धांत को सभी मैक्रोमोलेक्यूलर उत्प्रेरक पर लागू किया जा सकता है जिन्हें निस्पंदन के माध्यम से अन्य अभिकारकों से भिन्न किया जा सकता है। अब तक, मात्र एंजाइमों का ही पर्याप्त हद तक उपयोग किया गया है। | ||
=== वाष्पीकरण के साथ संयुक्त प्रतिक्रिया === | === वाष्पीकरण के साथ संयुक्त प्रतिक्रिया === |
Revision as of 13:48, 22 September 2023
मेम्ब्रेन रिएक्टर एक भौतिक उपकरण है जो अभिकारकों को जोड़ने या प्रतिक्रिया के उत्पादों को हटाने के लिए झिल्ली प्रौद्योगिकी के साथ रासायनिक रूपांतरण प्रक्रिया को जोड़ता है।[1]
झिल्ली का उपयोग करने वाले रासायनिक रिएक्टरों को सामान्यतः झिल्ली रिएक्टर कहा जाता है। झिल्ली का उपयोग विभिन्न कार्यों के लिए किया जा सकता है:[2]
- पृथक्करण
- उत्पाद (रसायन विज्ञान) का चयनात्मक निष्कर्षण
- उत्प्रेरक का प्रतिधारण
- अभिकारक का वितरण/खुराक
- उत्प्रेरक समर्थन (अधिकांशतः अभिकारकों के वितरण के साथ संयुक्त)
झिल्ली रिएक्टर एक चरण में दो इकाई संचालन के संयोजन के लिए एक उदाहरण हैं, उदाहरण के लिए, रासायनिक प्रतिक्रिया के साथ झिल्ली निस्पंदन।[3] एक अभिकारक के चयनात्मक निष्कर्षण के साथ प्रतिक्रिया अनुभाग का एकीकरण संतुलन मूल्य की तुलना में रूपांतरण (रसायन विज्ञान) को बढ़ाने की अनुमति देता है। यह विशेषता झिल्ली रिएक्टरों को संतुलन-सीमित एंडोथर्मिक प्रतिक्रियाएं करने के लिए उपयुक्त बनाती है।[4]
लाभ और महत्वपूर्ण मुद्दे
रिएक्टर के अंदर चयनात्मक झिल्लियों से कई लाभ होते हैं: रिएक्टर अनुभाग कई धारा को विपरीत मोड़ने की प्रक्रिया को प्रतिस्थापित करता है। इसके अतिरिक्त, किसी उत्पाद को हटाने से थर्मोडायनामिक्स सीमाओं को पार करने की अनुमति मिलती है।[5] इस प्रकार, अभिकारकों के उच्च रूपांतरण तक पहुंचना या कम तापमान के साथ समान रूपांतरण प्राप्त करना संभव है।[5]
प्रतिवर्ती प्रतिक्रियाएं सामान्यतः थर्मोडायनामिक्स द्वारा सीमित होती हैं: जब प्रत्यक्ष और विपरीत प्रतिक्रियाएं, जिनकी दर अभिकारकों और उत्पाद सांद्रता पर निर्भर करती है, संतुलित होती हैं, तो एक रासायनिक संतुलन स्थिति प्राप्त होती है।[5] यदि तापमान और दबाव निश्चित हैं, तो यह संतुलन स्थिति उत्पादों बनाम अभिकारकों की सांद्रता के अनुपात के लिए एक बाधा है, जो उच्च रूपांतरण तक पहुंचने की संभावना को बाधित करती है।[5]
प्रतिक्रिया के उत्पाद को हटाकर इस सीमा को पार किया जा सकता है: इस प्रकार, सिस्टम संतुलन तक नहीं पहुंच सकता है और प्रतिक्रिया जारी रहती है, उच्च रूपांतरण (या कम तापमान पर समान रूपांतरण) तक पहुंचती है।[6]
फिर भी, लंबी स्थिरता वाली झिल्लियों को डिजाइन करने में तकनीकी कठिनाइयों और झिल्लियों की उच्च लागत के कारण औद्योगिक व्यावसायीकरण में कई बाधाएँ हैं।[7] इसके अतिरिक्त, ऐसी प्रक्रिया की कमी है जो प्रौद्योगिकी का नेतृत्व करती है, यदि हाल के वर्षों में इस तकनीक को हाइड्रोजन उत्पादन और हाइड्रोकार्बन डिहाइड्रोजनेशन के लिए सफलतापूर्वक लागू किया गया हो।[8]
रिएक्टर विन्यास
सामान्यतः, झिल्ली रिएक्टरों को झिल्ली की स्थिति और रिएक्टर विन्यास के आधार पर वर्गीकृत किया जा सकता है।[1] सामान्यतः अंदर एक उत्प्रेरक होता है: यदि उत्प्रेरक झिल्ली के अंदर स्थापित होता है, तो रिएक्टर को उत्प्रेरक झिल्ली रिएक्टर (सीएमआर) कहा जाता है;[1] यदि उत्प्रेरक (और समर्थन) को अंदर पैक और स्थिर किया जाता है, तो रिएक्टर को पैक्ड बेड मेम्ब्रेन रिएक्टर कहा जाता है; यदि गैस की गति पर्याप्त अधिक है, और कण का आकार पर्याप्त छोटा है, तो बिस्तर का द्रवीकरण होता है और रिएक्टर को द्रवीकृत बिस्तर झिल्ली रिएक्टर कहा जाता है।[1] अन्य प्रकार के रिएक्टरों का नाम झिल्ली सामग्री से लिया गया है, उदाहरण के लिए, जिओलाइट झिल्ली रिएक्टर।
इन विन्यासों के बीच, हाल के वर्षों में, विशेष रूप से हाइड्रोजन उत्पादन में, निश्चित बिस्तर और द्रवीकृत बिस्तर पर अधिक ध्यान दिया गया है: इन स्थितियों में मानक रिएक्टर बस प्रतिक्रिया समष्टि के अंदर झिल्ली के साथ एकीकृत होता है।[9]
हाइड्रोजन उत्पादन के लिए झिल्ली रिएक्टर
आज हाइड्रोजन का उपयोग मुख्य रूप से रासायनिक उद्योग में अमोनिया उत्पादन और मेथनॉल संश्लेषण में एक अभिकारक के रूप में और हाइड्रोक्रैकिंग के लिए रिफाइनरी प्रक्रियाओं में किया जाता है।[10] इसके अतिरिक्त, ऊर्जा वाहक और ईंधन कोशिकाओं में ईंधन के रूप में इसके उपयोग में रुचि बढ़ रही है।[10]
कम लागत और इस तथ्य के कारण कि यह एक परिपक्व तकनीक है, वर्तमान में 50% से अधिक हाइड्रोजन प्राकृतिक गैस के भाप सुधार से उत्पन्न होता है।[11] पारंपरिक प्रक्रियाओं में प्राकृतिक गैस से सिनगैस का उत्पादन करने के लिए एक भाप सुधार अनुभाग, दो जल गैस शिफ्ट रिएक्टर होते हैं जो सिनगैस में हाइड्रोजन को बढ़ाते हैं और हाइड्रोजन शुद्धिकरण के लिए एक दबाव स्विंग सोखना इकाई होते हैं।[12] मेम्ब्रेन रिएक्टर आर्थिक और पर्यावरणीय दोनों लाभों के साथ, इन सभी वर्गों को एक ही इकाई में सम्मिलित करते हुए एक प्रक्रिया को गहन बनाते हैं।[13]
हाइड्रोजन उत्पादन के लिए झिल्ली
हाइड्रोजन उत्पादन उद्योग के लिए उपयुक्त होने के लिए, झिल्लियों में उच्च प्रवाह, हाइड्रोजन के प्रति उच्च चयनात्मकता, कम लागत और उच्च स्थिरता होनी चाहिए।[14] झिल्लियों में, घने अकार्बनिक सबसे उपयुक्त होते हैं, जिनकी चयनात्मकता छिद्रपूर्ण झिल्लियों की तुलना में अधिक होती है।[15] सघन झिल्लियों में, सिरेमिक झिल्लियों की तुलना में उच्च फ्लक्स के कारण धात्विक झिल्लियों का सबसे अधिक उपयोग किया जाता है।[9]
हाइड्रोजन पृथक्करण झिल्लियों में सबसे अधिक उपयोग की जाने वाली सामग्री पैलेडियम है, विशेष रूप से चांदी के साथ इसकी मिश्र धातु। यह धातु, यदि अन्य धातुओं की तुलना में अधिक महंगी है, हाइड्रोजन के प्रति बहुत अधिक घुलनशीलता दिखाती है।[16]
पैलेडियम झिल्ली के अंदर हाइड्रोजन का परिवहन तंत्र एक समाधान/प्रसार तंत्र का अनुसरण करता है: हाइड्रोजन अणु को झिल्ली की सतह पर सोख लिया जाता है, फिर यह हाइड्रोजन परमाणुओं में विभाजित हो जाता है; ये परमाणु विसरण के माध्यम से झिल्ली के पार जाते हैं और फिर झिल्ली के कम दबाव वाले भाग पर हाइड्रोजन अणु में पुनः संयोजित होते हैं; फिर, यह सतह से अवशोषित हो जाता है।[14]
हाल के वर्षों में, हाइड्रोजन उत्पादन के लिए द्रवीकृत बिस्तर झिल्ली रिएक्टरों के अंदर पैलेडियम झिल्ली के एकीकरण का अध्ययन करने के लिए कई कार्य किए गए थे।[17]
अन्य अनुप्रयोग
अपशिष्ट जल उपचार के लिए झिल्ली बायोरिएक्टर
अपशिष्ट जल उपचार संयंत्रों में जलमग्न और साइडस्ट्रीम झिल्ली बायोरिएक्टर सबसे विकसित निस्पंदन आधारित झिल्ली रिएक्टर हैं।
इलेक्ट्रोकेमिकल झिल्ली रिएक्टर ईसीएमआर
क्लोराइड का उत्पादन (Cl2) और NaCl से कास्टिक सोडा NaOH को पॉलीइलेक्ट्रोलाइट झिल्ली का संचालन करने वाले प्रोटॉन का उपयोग करके क्लोर-क्षार-प्रक्रिया द्वारा औद्योगिक रूप से किया जाता है। इसका उपयोग बड़े पैमाने पर किया जाता है और इसने डायाफ्राम इलेक्ट्रोलिसिस का समष्टि ले लिया है। रासायनिक रूपांतरण के समय कठोर परिस्थितियों का सामना करने के लिए नेफियन को एक बाइलेयर झिल्ली के रूप में विकसित किया गया है।
जैविक प्रणालियाँ
जैविक प्रणालियों में, झिल्ली कई आवश्यक कार्य पूरा करती है। जैविक कोशिका (जीव विज्ञान) का विभाजन झिल्लियों द्वारा होता है। अर्ध-पारगम्य झिल्ली | अर्ध-पारगम्यता प्रतिक्रियाओं और प्रतिक्रिया वातावरण को भिन्न करने की अनुमति देती है। कई एंजाइमों झिल्ली से बंधे होते हैं और अधिकांशतः झिल्ली के माध्यम से बड़े पैमाने पर परिवहन कृत्रिम झिल्ली की प्रकार निष्क्रिय होने के अतिरिक्त सक्रिय होता है, जिससे कोशिका को प्रोटॉन या पानी के सक्रिय परिवहन का उपयोग करके उदाहरण के लिए ग्रेडिएंट बनाए रखने की अनुमति मिलती है।
प्राकृतिक झिल्ली का उपयोग रासायनिक प्रतिक्रिया के लिए उपयोग का पहला उदाहरण है। सुअर के मूत्राशय की चयनात्मक पारगम्यता का उपयोग करके, ले चैटेलियर के सिद्धांत के अनुसार संक्षेपण उत्पादों की ओर प्रतिक्रिया की संतुलन स्थिति को समष्टि ांतरित करने के लिए संक्षेपण प्रतिक्रिया से पानी निकाला जा सकता है।
आकार बहिष्करण: एंजाइम झिल्ली रिएक्टर
चूंकि एंजाइम मैक्रो मोलेक्यूल ्स होते हैं और अधिकांशतः अभिकारकों से आकार में बहुत भिन्न होते हैं, उन्हें अल्ट्रा- या नैनोफिल्टरेशन कृत्रिम झिल्ली के साथ आकार बहिष्करण झिल्ली निस्पंदन द्वारा भिन्न किया जा सकता है। इसका उपयोग औद्योगिक पैमाने पर रासायनिक रूप से व्युत्पन्न रेस्मिक एमिनो एसिड के गतिज रेसिमिक रिज़ॉल्यूशन द्वारा एनैन्टीओप्योर अमीनो एसिड के उत्पादन के लिए किया जाता है। सबसे प्रमुख उदाहरण 400t/a के पैमाने पर एल-मेथिओनिन का उत्पादन है।[18] उत्प्रेरक के स्थिर एंजाइम के अन्य रूपों की तुलना में इस विधि का लाभ यह है कि एंजाइम गतिविधि या चयनात्मकता में परिवर्तन नहीं करते हैं क्योंकि यह घुलनशील रहता है।
सिद्धांत को सभी मैक्रोमोलेक्यूलर उत्प्रेरक पर लागू किया जा सकता है जिन्हें निस्पंदन के माध्यम से अन्य अभिकारकों से भिन्न किया जा सकता है। अब तक, मात्र एंजाइमों का ही पर्याप्त हद तक उपयोग किया गया है।
वाष्पीकरण के साथ संयुक्त प्रतिक्रिया
वाष्पीकरण में पृथक्करण के लिए सघन झिल्लियों का उपयोग किया जाता है। घनी झिल्लियों के लिए पृथक्करण झिल्ली में घटकों की रासायनिक क्षमता के अंतर से नियंत्रित होता है। झिल्ली के माध्यम से परिवहन की चयनात्मकता झिल्ली में सामग्रियों की घुलनशीलता और झिल्ली के माध्यम से उनके द्रव्यमान प्रसार में अंतर पर निर्भर करती है। उदाहरण के लिए, lipophilic झिल्ली का उपयोग करके पानी के चयनात्मक निष्कासन के लिए। इसका उपयोग संक्षेपण की थर्मोडायनामिक सीमाओं को दूर करने के लिए किया जा सकता है, उदाहरण के लिए, पानी को हटाकर एस्टरीफिकेशन प्रतिक्रियाएं।
खुराक: मीथेन का मेथनॉल में आंशिक ऑक्सीकरण
स्टार प्रक्रिया में[citation needed] हवा से ऑक्सीजन के साथ प्राकृतिक गैस से मीथेन के आंशिक ऑक्सीकरण द्वारा मेथनॉल में उत्प्रेरक रूपांतरण के लिए
2CH4 + ओ2 राख3ओह।
विस्फोटक मिश्रण के निर्माण को रोकने और कार्बन मोनोआक्साइड, कार्बन डाईऑक्साइड और पानी की क्रमिक प्रतिक्रिया को दबाने के लिए ऑक्सीजन का [[आंशिक दबाव]] कम होना चाहिए। यह ऑक्सीजन-चयनात्मक झिल्ली के साथ एक ट्यूबलर रिएक्टर का उपयोग करके प्राप्त किया जाता है। झिल्ली ऑक्सीजन के समान वितरण की अनुमति देती है क्योंकि झिल्ली के माध्यम से ऑक्सीजन के प्रवेश के लिए प्रेरक शक्ति वायु पक्ष और मीथेन पक्ष पर आंशिक दबाव में अंतर है।
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 1.3 Gallucci 2011, p. 1.
- ↑ Basile 2016, p. 9.
- ↑ De Falco 2011, p. 2.
- ↑ De Falco 2011, p. 110.
- ↑ 5.0 5.1 5.2 5.3 De Falco 2011, p. 3.
- ↑ De Falco 2011, p. 7.
- ↑ Basile 2016, p. 12.
- ↑ Basile 2016, p. 13.
- ↑ 9.0 9.1 Gallucci, Fausto; Medrano, Jose; Fernandez, Ekain; Melendez, Jon; Van Sint Annaland, Martin; Pacheco, Alfredo (1 July 2017). "हाइड्रोजन शुद्धिकरण और उत्पादन के लिए उच्च तापमान पीडी-आधारित झिल्ली और झिल्ली रिएक्टरों पर अग्रिम". Journal of Membrane Science and Research. 3 (3): 142–156. doi:10.22079/jmsr.2017.23644. ISSN 2476-5406.
- ↑ 10.0 10.1 De Falco 2011, p. 103.
- ↑ Di Marcoberardino, Gioele; Foresti, Stefano; Binotti, Marco; Manzolini, Giampaolo (July 2018). "विकेन्द्रीकृत हाइड्रोजन उत्पादन के लिए बायोगैस झिल्ली सुधारक की क्षमता". Chemical Engineering and Processing - Process Intensification. 129: 131–141. doi:10.1016/j.cep.2018.04.023.
- ↑ De Falco 2011, p. 108.
- ↑ Di Marcoberardino, Gioele; Liao, Xun; Dauriat, Arnaud; Binotti, Marco; Manzolini, Giampaolo (8 February 2019). "हाइड्रोजन उत्पादन के लिए एक अभिनव बायोगैस झिल्ली सुधारक का जीवन चक्र मूल्यांकन और आर्थिक विश्लेषण". Processes. 7 (2): 86. doi:10.3390/pr7020086.
- ↑ 14.0 14.1 Gallucci, Fausto; Fernandez, Ekain; Corengia, Pablo; van Sint Annaland, Martin (April 2013). "हाइड्रोजन उत्पादन के लिए झिल्लियों और झिल्ली रिएक्टरों पर हालिया प्रगति". Chemical Engineering Science. 92: 40–66. doi:10.1016/j.ces.2013.01.008.
- ↑ Cardoso, Simão P; Azenha, Ivo S; Lin, Zhi; Portugal, Inês; Rodrigues, Alírio E; Silva, Carlos M (4 December 2017). "हाइड्रोजन पृथक्करण के लिए अकार्बनिक झिल्ली". Separation & Purification Reviews. 47 (3): 229–266. doi:10.1080/15422119.2017.1383917.
- ↑ Basile 2016, p. 7.
- ↑ Arratibel, Alba; Pacheco Tanaka, Alfredo; Laso, Iker; van Sint Annaland, Martin; Gallucci, Fausto (March 2018). "द्रवयुक्त बेड मेम्ब्रेन रिएक्टरों में हाइड्रोजन उत्पादन के लिए पीडी-आधारित डबल-स्किन्ड मेम्ब्रेन का विकास". Journal of Membrane Science. 550: 536–544. doi:10.1016/j.memsci.2017.10.064.
- ↑ Industrial Biotransformations, 2nd, Completely Revised and Enlarged Edition Andreas Liese (Editor), Karsten Seelbach (Editor), Christian Wandrey (Editor) ISBN 978-3-527-31001-2.
संदर्भ
- Gallucci, Fausto; Basile, Angelo (2011). Membranes for membrane reactors : preparation, optimization, and selection. Wiley. ISBN 978-0-470-74652-3.
- Basile, Angelo; De Falco, Marcello; Centi, Gabriele; Iaquaniello, Gaetano (2016). Membrane reactor engineering: applications for a greener process industry. Wiley. ISBN 978-1-118-90680-4.
- De Falco, Marcello; Marrelli, Luigi; Iaquaniello, Gaetano (2011). Membrane reactors for hydrogen production processes. Springer. ISBN 978-0-85729-150-9.
- Ho, W. S. Winston; Sirkar, Kamalesh K. (1992). Membrane handbook. Springer Science+Business Media New York. ISBN 978-1-4613-6575-4.
- Baker, Richard W. (2012). Membrane technology and applications. Wiley. ISBN 978-0-470-74372-0.
बाहरी संबंध
- European project Fuelcell website, about membrane reactors application for bio-ethanol conversion
- European project Bionico website, about membrane reactors application in hydrogen production from biogas
- European project Macbeth website, about various applications of membrane reactors and their industrialization