कम्यूटेशन सेल: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
कम्यूटेशन सेल पावर इलेक्ट्रॉनिक्स में बुनियादी संरचना है। यह दो इलेक्ट्रॉनिक स्विच (आजकल, एक उच्च-शक्ति [[अर्धचालक]], यांत्रिक स्विच नहीं) से बना है। इसे परंपरागत रूप से हेलिकॉप्टर के रूप में जाना जाता था, लेकिन चूंकि | कम्यूटेशन सेल पावर इलेक्ट्रॉनिक्स में बुनियादी संरचना है। यह दो इलेक्ट्रॉनिक स्विच (आजकल, एक उच्च-शक्ति [[अर्धचालक]], यांत्रिक स्विच नहीं) से बना है। इसे परंपरागत रूप से हेलिकॉप्टर के रूप में जाना जाता था, लेकिन चूंकि विद्युत की आपूर्ति बदलना विद्युत रूपांतरण का एक प्रमुख रूप बन गया है, इसलिए यह नया शब्द अधिक लोकप्रिय हो गया है।<ref>{{Cite book |last=Perret |first=Robert |url=https://books.google.com/books?id=YRc7EQha_lQC&dq=commutation+cell&pg=SA6-PA73 |title=पावर इलेक्ट्रॉनिक्स सेमीकंडक्टर डिवाइस|date=2013-03-01 |publisher=John Wiley & Sons |isbn=978-1-118-62320-6 |language=en}}</ref> | ||
कम्यूटेशन सेल का उद्देश्य डीसी पावर को स्क्वायर वेव अल्टरनेटिंग करंट में "काटना" है। ऐसा इसलिए किया जाता है ताकि वोल्टेज को बदलने के लिए एलसी परिपथ में एक प्रेरक और एक [[संधारित्र]] का उपयोग किया जा सके। सिद्धांत रूप में, यह एक हानिरहित प्रक्रिया है; व्यवहार में, 80-90% से ऊपर दक्षता नियमित रूप से हासिल की जाती है। स्वच्छ डीसी | कम्यूटेशन सेल का उद्देश्य डीसी पावर को स्क्वायर वेव अल्टरनेटिंग करंट में "काटना" है। ऐसा इसलिए किया जाता है ताकि वोल्टेज को बदलने के लिए एलसी परिपथ में एक प्रेरक और एक [[संधारित्र]] का उपयोग किया जा सके। सिद्धांत रूप में, यह एक हानिरहित प्रक्रिया है; व्यवहार में, 80-90% से ऊपर दक्षता नियमित रूप से हासिल की जाती है। स्वच्छ डीसी विद्युत का उत्पादन करने के लिए आउटपुट को आमतौर पर एक फिल्टर के माध्यम से चलाया जाता है। कम्यूटेशन सेल में स्विच के ऑन और ऑफ टाइम (ड्यूटी चक्र) को नियंत्रित करके, आउटपुट वोल्टेज को नियंत्रित किया जा सकता है। | ||
यह मूल सिद्धांत पोर्टेबल उपकरणों में छोटे [[डीसी-डीसी कनवर्टर|डीसी-डीसी]] कनवर्टर्स से लेकर [[उच्च वोल्टेज]] डीसी पावर ट्रांसमिशन के लिए बड़े पैमाने पर स्विचिंग स्टेशनों तक, अधिकांश आधुनिक | यह मूल सिद्धांत पोर्टेबल उपकरणों में छोटे [[डीसी-डीसी कनवर्टर|डीसी-डीसी]] कनवर्टर्स से लेकर [[उच्च वोल्टेज]] डीसी पावर ट्रांसमिशन के लिए बड़े पैमाने पर स्विचिंग स्टेशनों तक, अधिकांश आधुनिक विद्युत आपूर्ति का मूल है। | ||
==दो | ==दो विद्युत तत्वों का कनेक्शन== | ||
[[ | [[File:Voltage and current sources.svg|thumb|चित्र 1: विभिन्न विन्यास जो असंभव हैं: एक वोल्टेज स्रोत का शॉर्ट परिपथ, एक खुले परिपथ में वर्तमान स्रोत, समानांतर में दो वोल्टेज स्रोत, श्रृंखला में दो वर्तमान स्रोत। इनमें से किसी भी परिपथ के परिणामस्वरूप विफलता होगी या बड़ी मात्रा में गर्मी उत्पन्न होगी!]] | ||
एक कम्यूटेशन सेल दो | एक कम्यूटेशन सेल दो विद्युत तत्वों को जोड़ता है, जिन्हें अक्सर स्रोत के रूप में जाना जाता है, हालांकि वे या तो विद्युत का उत्पादन या अवशोषित कर सकते हैं।<ref>{{Cite book |last=Lemmen |first=E. |url=https://books.google.com/books?id=So-QswEACAAJ |title=The Extended Commutation Cell : a Path Towards Flexible Multilevel Power Processing |date=2017 |publisher=Technische Universiteit Eindhoven |isbn=978-90-386-4216-1 |language=en}}</ref> | ||
[[File:Inductors capacitor.svg|thumb|चित्र 2: वोल्टेज और वर्तमान स्रोतों की तरह, एक संधारित्र से दूसरे में या एक प्रारंभकर्ता से दूसरे में सीधे ऊर्जा हस्तांतरण से बचना चाहिए, क्योंकि इससे महत्वपूर्ण नुकसान होता है।]] | |||
विद्युत स्रोतों को जोड़ने के लिए कुछ आवश्यकताएँ मौजूद हैं। असंभव विन्यास चित्र 1 में सूचीबद्ध हैं। वे मूल रूप से हैं: | |||
* वोल्टेज स्रोत को छोटा नहीं किया जा सकता है, क्योंकि शॉर्ट सर्किट एक शून्य वोल्टेज लगाएगा जो स्रोत द्वारा उत्पन्न वोल्टेज के विपरीत होगा; | |||
* उसी प्रकार, किसी धारा स्रोत को खुले परिपथ में नहीं रखा जा सकता; | |||
* दो (या अधिक) वोल्टेज स्रोतों को समानांतर में नहीं जोड़ा जा सकता है, क्योंकि उनमें से प्रत्येक सर्किट पर वोल्टेज थोपने का प्रयास करेगा; | |||
* दो (या अधिक) वर्तमान स्रोतों को श्रृंखला में नहीं जोड़ा जा सकता है, क्योंकि उनमें से प्रत्येक लूप में विद्युत धारा थोपने का प्रयास करेगा। | |||
यह चिरसम्मत स्रोतों (बैटरी, जनरेटर) और कैपेसिटर और इंडक्टर्स पर लागू होता है: एक छोटे समय के पैमाने पर, एक कैपेसिटर एक वोल्टेज स्रोत के समान होता है और एक प्रारंभकर्ता एक वर्तमान स्रोत के समान होता है। समानांतर में विभिन्न वोल्टेज स्तरों के साथ दो कैपेसिटर को कनेक्ट करना दो वोल्टेज स्रोतों को जोड़ने के अनुरूप है, चित्र 1 में निषिद्ध कनेक्शन (संपर्क) में से एक है। | |||
कनेक्शन | चित्र 2 ऐसे कनेक्शन की खराब दक्षता को दर्शाता है। एक संधारित्र को वोल्टेज V पर चार्ज किया जाता है, और उसे समान क्षमता वाले संधारित्र से जोड़ा जाता है, लेकिन डिस्चार्ज किया जाता है। | ||
कनेक्शन | कनेक्शन से पहले, परिपथ में ऊर्जा <math>E=\frac{1}{2}C\cdot V^2</math>, होती है और आवेशों की मात्रा Q के बराबर <math>C\cdot U</math>, है जहाँ U स्थितिज ऊर्जा है। | ||
कनेक्शन हो जाने के बाद, आवेशों की मात्रा स्थिर रहती है और कुल धारिता <math>2C</math> स्थिर रहती है। इसलिए, कैपेसिटेंस पर वोल्टेज <math>\frac{Q}{2C}=\frac{V}{2}</math>है। परिपथ में ऊर्जा तब <math>\frac{1}{2}(2C)\left(\frac{V}{2}\right)^2=\frac{E}{2}</math>होती है। इसलिए, कनेक्शन के दौरान आधी ऊर्जा नष्ट हो गई है। | |||
परिणामस्वरूप, यह देखा जा सकता है कि एक कम्यूटेशन सेल केवल वोल्टेज स्रोत को वर्तमान स्रोत | यही बात दो प्रेरकों की श्रृंखला में कनेक्शन के साथ भी लागू होती है। चुंबकीय प्रवाह (<math>\Phi=L\cdot I</math>) रूपान्तरण से पहले और बाद में स्थिर रहता है। चूँकि कम्यूटेशन के बाद कुल प्रेरकत्व 2L है, धारा <math>\frac{I}{2}</math> बन जाती है (चित्र 2 देखें)। आवागमन से पहले की ऊर्जा <math>\frac{1}{2}L\cdot I^2</math> के बाद, <math>\frac{1}{2}L\cdot \left(\frac{I}{2}\right)^2</math>यह है। यहाँ भी, आवागमन के दौरान आधी ऊर्जा नष्ट हो जाती है। | ||
परिणामस्वरूप, यह देखा जा सकता है कि एक कम्यूटेशन सेल केवल एक वोल्टेज स्रोत को एक वर्तमान स्रोत (और इसके विपरीत) से जोड़ सकता है। हालाँकि, इंडक्टर्स और कैपेसिटर का उपयोग करके, किसी स्रोत के व्यवहार को बदलना संभव है: उदाहरण के लिए, दो वोल्टेज स्रोतों को एक कनवर्टर के माध्यम से जोड़ा जा सकता है यदि यह ऊर्जा स्थानांतरित करने के लिए एक प्रारंभकर्ता का उपयोग करता है। | |||
==कम्यूटेशन सेल की संरचना== | ==कम्यूटेशन सेल की संरचना== | ||
Line 39: | Line 40: | ||
==कन्वर्टर्स में कम्यूटेशन सेल== | ==कन्वर्टर्स में कम्यूटेशन सेल== | ||
[[image:Commutation cell in converters.svg|thumb|250px|right|चित्र 4: कम्यूटेशन सेल प्रत्येक स्विचिंग | [[image:Commutation cell in converters.svg|thumb|250px|right|चित्र 4: कम्यूटेशन सेल प्रत्येक स्विचिंग विद्युत आपूर्ति में मौजूद है | ||
कम्यूटेशन सेल किसी भी पावर इलेक्ट्रॉनिक्स कनवर्टर में पाया जा सकता है। चित्र 4 में कुछ उदाहरण दिए गए हैं। जैसा कि देखा जा सकता है, एक वर्तमान स्रोत (वास्तव में एक लूप जिसमें एक प्रेरकत्व होता है) हमेशा मध्य बिंदु और कम्यूटेशन सेल के बाहरी कनेक्शनों में से एक के बीच जुड़ा होता है, जबकि एक वोल्टेज स्रोत (या एक संधारित्र, या वोल्टेज स्रोत और संधारित्र की श्रृंखला में एक कनेक्शन) हमेशा दो बाहरी कनेक्शनों से जुड़ा होता है।<ref>{{Cite book |last=Cheron |first=Y. |url=https://books.google.com/books?id=dTHpCAAAQBAJ&dq=what+is+a+%22commutation+cell%22&pg=PA71 |title=नरम कम्यूटेशन|date=2012-12-06 |publisher=Springer Science & Business Media |isbn=978-94-011-2350-1 |language=en}}</ref> | कम्यूटेशन सेल किसी भी पावर इलेक्ट्रॉनिक्स कनवर्टर में पाया जा सकता है। चित्र 4 में कुछ उदाहरण दिए गए हैं। जैसा कि देखा जा सकता है, एक वर्तमान स्रोत (वास्तव में एक लूप जिसमें एक प्रेरकत्व होता है) हमेशा मध्य बिंदु और कम्यूटेशन सेल के बाहरी कनेक्शनों में से एक के बीच जुड़ा होता है, जबकि एक वोल्टेज स्रोत (या एक संधारित्र, या वोल्टेज स्रोत और संधारित्र की श्रृंखला में एक कनेक्शन) हमेशा दो बाहरी कनेक्शनों से जुड़ा होता है।<ref>{{Cite book |last=Cheron |first=Y. |url=https://books.google.com/books?id=dTHpCAAAQBAJ&dq=what+is+a+%22commutation+cell%22&pg=PA71 |title=नरम कम्यूटेशन|date=2012-12-06 |publisher=Springer Science & Business Media |isbn=978-94-011-2350-1 |language=en}}</ref> | ||
Line 45: | Line 46: | ||
==यह भी देखें== | ==यह भी देखें== | ||
* | * विद्युत के इलेक्ट्रॉनिक्स | ||
* [[डीसी डीसी]] | * [[डीसी डीसी]] | ||
* स्विच्ड-मोड | * स्विच्ड-मोड विद्युत की आपूर्ति | ||
* [[बक कन्वर्टर]] | * [[बक कन्वर्टर]] | ||
* [[बूस्ट कनर्वटर]] | * [[बूस्ट कनर्वटर]] |
Revision as of 14:32, 24 September 2023
कम्यूटेशन सेल पावर इलेक्ट्रॉनिक्स में बुनियादी संरचना है। यह दो इलेक्ट्रॉनिक स्विच (आजकल, एक उच्च-शक्ति अर्धचालक, यांत्रिक स्विच नहीं) से बना है। इसे परंपरागत रूप से हेलिकॉप्टर के रूप में जाना जाता था, लेकिन चूंकि विद्युत की आपूर्ति बदलना विद्युत रूपांतरण का एक प्रमुख रूप बन गया है, इसलिए यह नया शब्द अधिक लोकप्रिय हो गया है।[1]
कम्यूटेशन सेल का उद्देश्य डीसी पावर को स्क्वायर वेव अल्टरनेटिंग करंट में "काटना" है। ऐसा इसलिए किया जाता है ताकि वोल्टेज को बदलने के लिए एलसी परिपथ में एक प्रेरक और एक संधारित्र का उपयोग किया जा सके। सिद्धांत रूप में, यह एक हानिरहित प्रक्रिया है; व्यवहार में, 80-90% से ऊपर दक्षता नियमित रूप से हासिल की जाती है। स्वच्छ डीसी विद्युत का उत्पादन करने के लिए आउटपुट को आमतौर पर एक फिल्टर के माध्यम से चलाया जाता है। कम्यूटेशन सेल में स्विच के ऑन और ऑफ टाइम (ड्यूटी चक्र) को नियंत्रित करके, आउटपुट वोल्टेज को नियंत्रित किया जा सकता है।
यह मूल सिद्धांत पोर्टेबल उपकरणों में छोटे डीसी-डीसी कनवर्टर्स से लेकर उच्च वोल्टेज डीसी पावर ट्रांसमिशन के लिए बड़े पैमाने पर स्विचिंग स्टेशनों तक, अधिकांश आधुनिक विद्युत आपूर्ति का मूल है।
दो विद्युत तत्वों का कनेक्शन
एक कम्यूटेशन सेल दो विद्युत तत्वों को जोड़ता है, जिन्हें अक्सर स्रोत के रूप में जाना जाता है, हालांकि वे या तो विद्युत का उत्पादन या अवशोषित कर सकते हैं।[2]
विद्युत स्रोतों को जोड़ने के लिए कुछ आवश्यकताएँ मौजूद हैं। असंभव विन्यास चित्र 1 में सूचीबद्ध हैं। वे मूल रूप से हैं:
- वोल्टेज स्रोत को छोटा नहीं किया जा सकता है, क्योंकि शॉर्ट सर्किट एक शून्य वोल्टेज लगाएगा जो स्रोत द्वारा उत्पन्न वोल्टेज के विपरीत होगा;
- उसी प्रकार, किसी धारा स्रोत को खुले परिपथ में नहीं रखा जा सकता;
- दो (या अधिक) वोल्टेज स्रोतों को समानांतर में नहीं जोड़ा जा सकता है, क्योंकि उनमें से प्रत्येक सर्किट पर वोल्टेज थोपने का प्रयास करेगा;
- दो (या अधिक) वर्तमान स्रोतों को श्रृंखला में नहीं जोड़ा जा सकता है, क्योंकि उनमें से प्रत्येक लूप में विद्युत धारा थोपने का प्रयास करेगा।
यह चिरसम्मत स्रोतों (बैटरी, जनरेटर) और कैपेसिटर और इंडक्टर्स पर लागू होता है: एक छोटे समय के पैमाने पर, एक कैपेसिटर एक वोल्टेज स्रोत के समान होता है और एक प्रारंभकर्ता एक वर्तमान स्रोत के समान होता है। समानांतर में विभिन्न वोल्टेज स्तरों के साथ दो कैपेसिटर को कनेक्ट करना दो वोल्टेज स्रोतों को जोड़ने के अनुरूप है, चित्र 1 में निषिद्ध कनेक्शन (संपर्क) में से एक है।
चित्र 2 ऐसे कनेक्शन की खराब दक्षता को दर्शाता है। एक संधारित्र को वोल्टेज V पर चार्ज किया जाता है, और उसे समान क्षमता वाले संधारित्र से जोड़ा जाता है, लेकिन डिस्चार्ज किया जाता है।
कनेक्शन से पहले, परिपथ में ऊर्जा , होती है और आवेशों की मात्रा Q के बराबर , है जहाँ U स्थितिज ऊर्जा है।
कनेक्शन हो जाने के बाद, आवेशों की मात्रा स्थिर रहती है और कुल धारिता स्थिर रहती है। इसलिए, कैपेसिटेंस पर वोल्टेज है। परिपथ में ऊर्जा तब होती है। इसलिए, कनेक्शन के दौरान आधी ऊर्जा नष्ट हो गई है।
यही बात दो प्रेरकों की श्रृंखला में कनेक्शन के साथ भी लागू होती है। चुंबकीय प्रवाह () रूपान्तरण से पहले और बाद में स्थिर रहता है। चूँकि कम्यूटेशन के बाद कुल प्रेरकत्व 2L है, धारा बन जाती है (चित्र 2 देखें)। आवागमन से पहले की ऊर्जा के बाद, यह है। यहाँ भी, आवागमन के दौरान आधी ऊर्जा नष्ट हो जाती है।
परिणामस्वरूप, यह देखा जा सकता है कि एक कम्यूटेशन सेल केवल एक वोल्टेज स्रोत को एक वर्तमान स्रोत (और इसके विपरीत) से जोड़ सकता है। हालाँकि, इंडक्टर्स और कैपेसिटर का उपयोग करके, किसी स्रोत के व्यवहार को बदलना संभव है: उदाहरण के लिए, दो वोल्टेज स्रोतों को एक कनवर्टर के माध्यम से जोड़ा जा सकता है यदि यह ऊर्जा स्थानांतरित करने के लिए एक प्रारंभकर्ता का उपयोग करता है।
कम्यूटेशन सेल की संरचना
[[image:Commutation cell practical theroretical.svg|thumb|350px|चित्र 3: एक कम्यूटेशन सेल विभिन्न प्रकृति के दो स्रोतों (वर्तमान और वोल्टेज स्रोत) को जोड़ता है। यह सैद्धांतिक रूप से दो स्विच का उपयोग करता है, लेकिन चूंकि उन दोनों को एक पूर्ण सिंक्रनाइज़ेशन के साथ कमांड किया जाना चाहिए, व्यावहारिक अनुप्रयोगों में स्विच में से एक को डायोड द्वारा प्रतिस्थापित किया जाता है। यह कम्यूटेशन सेल को यूनिडायरेक्शनल बनाता है। दो यूनिडायरेक्शनल को समानांतर करके एक द्विदिश कम्यूटेशन सेल प्राप्त किया जा सकता है।
जैसा कि ऊपर उल्लेख किया गया है, एक कम्यूटेशन सेल को वोल्टेज और वर्तमान स्रोतों के बीच रखा जाना चाहिए। कोशिका की स्थिति के आधार पर, दोनों स्रोत या तो जुड़े हुए हैं, या अलग-थलग हैं। पृथक होने पर, धारा स्रोत को छोटा कर देना चाहिए, क्योंकि खुले परिपथ में धारा उत्पन्न करना असंभव है। इसलिए कम्यूटेशन सेल का मूल योजना चित्र 3 (शीर्ष) में दिया गया है। यह विपरीत स्थितियों वाले दो स्विचों का उपयोग करता है: चित्र 3 में दर्शाए गए कॉन्फ़िगरेशन में, दोनों स्रोत अलग-थलग हैं, और वर्तमान स्रोत छोटा है। दोनों स्रोत तब जुड़े होते हैं जब शीर्ष स्विच चालू होता है (और निचला स्विच बंद होता है)।
स्विचों के बीच पूर्ण तालमेल होना असंभव है। कम्यूटेशन के दौरान एक बिंदु पर, वे या तो चालू होंगे (इस प्रकार वोल्टेज स्रोत को छोटा कर देंगे) या बंद कर देंगे (इस प्रकार वर्तमान स्रोत को एक खुले परिपथ में छोड़ देंगे)। यही कारण है कि स्विचों में से एक को डायोड से बदलना पड़ता है। डायोड एक प्राकृतिक कम्यूटेशन उपकरण है, यानी इसकी स्थिति परिपथ द्वारा ही नियंत्रित होती है। यह ठीक उसी समय चालू या बंद होगा जब इसे चालू करना होगा। कम्यूटेशन सेल में डायोड का उपयोग करने का परिणाम यह होता है कि यह इसे यूनिडायरेक्शनल बनाता है (चित्र 3 देखें)। एक द्विदिशात्मक सेल बनाया जा सकता है, लेकिन यह समानांतर में जुड़ी दो यूनिडायरेक्शनल कोशिकाओं के बराबर है।
कन्वर्टर्स में कम्यूटेशन सेल
[[image:Commutation cell in converters.svg|thumb|250px|right|चित्र 4: कम्यूटेशन सेल प्रत्येक स्विचिंग विद्युत आपूर्ति में मौजूद है
कम्यूटेशन सेल किसी भी पावर इलेक्ट्रॉनिक्स कनवर्टर में पाया जा सकता है। चित्र 4 में कुछ उदाहरण दिए गए हैं। जैसा कि देखा जा सकता है, एक वर्तमान स्रोत (वास्तव में एक लूप जिसमें एक प्रेरकत्व होता है) हमेशा मध्य बिंदु और कम्यूटेशन सेल के बाहरी कनेक्शनों में से एक के बीच जुड़ा होता है, जबकि एक वोल्टेज स्रोत (या एक संधारित्र, या वोल्टेज स्रोत और संधारित्र की श्रृंखला में एक कनेक्शन) हमेशा दो बाहरी कनेक्शनों से जुड़ा होता है।[3]
यह भी देखें
- विद्युत के इलेक्ट्रॉनिक्स
- डीसी डीसी
- स्विच्ड-मोड विद्युत की आपूर्ति
- बक कन्वर्टर
- बूस्ट कनर्वटर
- बक-बूस्ट कनवर्टर
- कुक कनवर्टर
संदर्भ
- ↑ Perret, Robert (2013-03-01). पावर इलेक्ट्रॉनिक्स सेमीकंडक्टर डिवाइस (in English). John Wiley & Sons. ISBN 978-1-118-62320-6.
- ↑ Lemmen, E. (2017). The Extended Commutation Cell : a Path Towards Flexible Multilevel Power Processing (in English). Technische Universiteit Eindhoven. ISBN 978-90-386-4216-1.
- ↑ Cheron, Y. (2012-12-06). नरम कम्यूटेशन (in English). Springer Science & Business Media. ISBN 978-94-011-2350-1.